

# **CSIR NET CHEMICAL SCIENCE**

| 1                               |                                |                                         |                                                                         |                                                   |                                                                           |                                      |                                                          |                                            |                                                           |                                                                            |                                                                               |                                     |                                               |                                                                                                                 |                                                                                |                                                                                                                         | 18                              |
|---------------------------------|--------------------------------|-----------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| H<br>Hydrogen<br>1.008          | 2                              |                                         |                                                                         | <b>_</b> '                                        | 4ain                                                                      | Grou                                 | Ρ                                                        |                                            |                                                           |                                                                            |                                                                               | 13                                  | 14                                            | 15                                                                                                              | 16                                                                             | 17                                                                                                                      | He<br>Helium<br>4.003           |
| <sup>3</sup><br>Li              | <sup>4</sup> Be                |                                         |                                                                         |                                                   | ſrans                                                                     | ition                                | Met                                                      | als                                        |                                                           |                                                                            |                                                                               | 5<br><b>B</b>                       | 6<br>Carbon                                   | 7<br>Nitrogen                                                                                                   | 8<br>0                                                                         | 9<br>F                                                                                                                  | <sup>10</sup> Ne                |
| 6.941<br>11                     | 9.012                          |                                         |                                                                         |                                                   | nner                                                                      | Tran                                 | sitio                                                    | n Me                                       | tals                                                      |                                                                            |                                                                               | 10.811                              | 12.011<br>14                                  | 14.007                                                                                                          | 15.999                                                                         | 18.998                                                                                                                  | 20.180                          |
| Na<br>Sodium<br>22.990          | Magnesium<br>24.305            | 3                                       | 4                                                                       | 5                                                 | 6                                                                         | 7                                    | 8                                                        | 9                                          | 10                                                        | 11                                                                         | 12                                                                            | Aluminum<br>26.982                  | Silicon<br>28.086                             | Phosphorus<br>30.974                                                                                            | Sulfur<br>32.066                                                               | Chlorine<br>35.453                                                                                                      | Argon<br>39.948                 |
| 19<br>K<br>Potassium            | 20<br>Ca<br>Calcium            | 21<br>Sc<br>Scandium                    | 22<br>Titanium                                                          | 23<br>V<br>Vanadium                               | Chromium                                                                  | 25<br>Mn<br>Manganese                | Fe<br>Iron                                               | 27<br>Co<br>Cobalt                         | 28<br>Nickel<br>58.603                                    | 29<br>Cu<br>Copper                                                         | 30<br>Zn<br>Zinc<br>65.38                                                     | 31<br>Gallium<br>69.723             | 32<br>Germanium<br>72 621                     | 33<br>As<br>Arsenic<br>74.922                                                                                   | 34<br>Se<br>Selenium<br>78.971                                                 | 35<br>Br<br>Bromine<br>79.904                                                                                           | 36<br>Kr<br>Krypton             |
| 37<br>Rb<br>Rubidium<br>85.468  | 38<br>Sr<br>Strontium<br>87.62 | 39<br>Y<br>Yttrium<br>88.906            | 40<br>Zr<br>Zirconium<br>91.224                                         | 41<br>Niobium<br>92.906                           | 42<br>Molybdenum<br>95.95                                                 | 43<br>Tc<br>Technetium<br>98.907     | 44<br>Ruthenium<br>101.07                                | 45<br>Rh<br>Rhodium<br>102.906             | 46<br>Pd<br>Palladium<br>106.42                           | 47<br>Ag<br>silver<br>107.868                                              | 48<br>Cd<br>Cadmium<br>112.414                                                | 49<br>Indium<br>114.818             | 50<br>Sn<br>Tin<br>118.711                    | 51<br><b>Sb</b><br>Antimony<br>121.760                                                                          | 52<br>Te<br>Tellurium<br>127.6                                                 | 53<br>Jodine<br>126.904                                                                                                 | 54<br>Xe<br>Xenon<br>131.294    |
| 55<br>Cs<br>Cesium<br>132.905   | 56<br>Ba<br>Barium<br>137.328  | 57-71                                   | 72<br>Hf<br>Hafnium<br>178.49                                           | 73<br>Ta<br>Tantalum<br>180.948                   | 74<br>W<br>Tungsten<br>183.84                                             | 75<br>Re<br>Rhenium<br>186.207       | 76<br>Os<br>Osmium<br>190.23                             | 77<br>Ir<br>Iridium<br>192.217             | 78<br>Pt<br>Platinum<br>195.085                           | 79<br>Au<br>Gold<br>196.967                                                | 80<br>Hg<br>Mercury<br>200.592                                                | 81<br>Til<br>Thallium<br>204.383    | 82<br>Pb<br>Lead<br>207.2                     | 83<br>Bi<br>Bismuth<br>208.980                                                                                  | 84<br>Po<br>Polonium<br>[208.982]                                              | 85<br>At<br>Astatine<br>209.987                                                                                         | 86<br>Rn<br>Radon<br>222.018    |
| 87<br>Fr<br>Francium<br>223.020 | 88<br>Ra<br>Radium<br>226.025  | 89-103                                  | 104<br>Rf<br>Rutherfordium<br>[261]                                     | Dubnium<br>[262]                                  | 106<br>Sg<br>Seaborgium<br>[266]                                          | Bohrium<br>[264]                     | Hassium<br>[269]                                         | 109<br>Mt<br>Meitnerium<br>[278]           | Darmstadtium<br>[281]                                     | Roentgenium<br>[280]                                                       | Copernicium<br>[285]                                                          | 113<br>Nh<br>Nihonium<br>[286]      | Flerovium<br>[289]                            | Moscovium<br>[289]                                                                                              | Livermorium<br>[293]                                                           | TS<br>Tennessine<br>[294]                                                                                               | 118<br>Og<br>Oganesson<br>[294] |
|                                 |                                | 57<br>Lanti<br>130<br>89<br>Actu<br>221 | anum<br>1905 SB<br>Cer<br>140<br>Cer<br>140<br>Cer<br>140<br>Tho<br>232 | inam<br>1115<br>Pressoo:<br>140<br>Protoco<br>231 | 908<br>441<br>441<br>442<br>443<br>444<br>444<br>444<br>444<br>444<br>444 | d 61<br>Prom<br>243<br>J Nept<br>029 | ethium<br>1913 62<br>San<br>15<br>15<br>94<br>Plut<br>24 | m 63<br>Euro<br>151<br>Pu 95<br>Ame<br>241 | iu geium<br>1964<br>sade<br>15<br><b>P6</b><br>Cu<br>3061 | id<br>linium<br>7.25<br>ium<br>rium<br>rium<br>15<br>97<br>B<br>Bert<br>24 | bium   66     bium   Dyspr     8.925   162     Bk   Califor     Califor   251 | by 67<br>Hol<br>500<br>Frium<br>080 | 68<br>Ett<br>1930<br>Est<br>100<br>Fer<br>251 | 69           Jum           7259           161           Million           Million           Mend           2095 | n 200<br>Jium 200<br>9.934 70<br>Ytte<br>173<br>102<br>No<br>8.93<br>No<br>255 | 71           rbium           105           107           108           109           101           Latter           101 | utium<br>1967<br>Infoium<br>62  |
|                                 |                                |                                         |                                                                         |                                                   |                                                                           |                                      |                                                          |                                            |                                                           |                                                                            |                                                                               |                                     |                                               |                                                                                                                 | sci                                                                            | enceno                                                                                                                  | tes.org                         |

Main Group PYQ NET Ass. With Solution



Best Classes For CSIR NET Chemical Science GATE CY | IIT JAM CY Preparation

@madchemclasses

@Madchem Classes Chemistry

@madchemclasses



| 1.  | Alkali metal superoxides are obtained by<br>(a) Oxygen with alkali metals in liquid ar<br>(b) Water with alkali metals in liquid am<br>(c) H <sub>2</sub> O <sub>2</sub> with alkali metals. | v the reaction of<br>nmonia.<br>monia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | [NET JUNE 2011]          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|
| 2   | (a) H <sub>2</sub> O <sub>2</sub> with aikall metals in liquid amn                                                                                                                           | nonia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               | [NET HINE 2011]          |
| ۷.  | $(A) [E_{\alpha}(CN)_{c}]^{3}$ - (B) $K[O_{\alpha}$                                                                                                                                          | $(C) Co(SO_4)_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(D) SO^{2-}$                                 | [NET JONE 2011]          |
|     | (a) A and B only (b) B and C only                                                                                                                                                            | $(C) Ce(304)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) B and D $\alpha$                          | nlv                      |
| 3.  | Match List-I (compounds) with List-II (                                                                                                                                                      | application) and select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the correct an                                | swer using the codes     |
| 01  | given below the lists.                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | [NET IUNE 2011]          |
|     | List -I                                                                                                                                                                                      | List-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | []                       |
|     | (A) Trisodium phosphate                                                                                                                                                                      | (i) Plasticizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                          |
|     | (B) Triaryl phosphates                                                                                                                                                                       | (ii) Water softener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                          |
|     | (C) Triethylphosphate                                                                                                                                                                        | (iii) Toothpaste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                          |
|     | (D) Calcium hydrogen phosphate                                                                                                                                                               | (iv) Insecticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                          |
|     | (a) (A)–ii (B) –i (C) –iv (D)–iii                                                                                                                                                            | (b) (A)–i (B) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -ii (C) –iv (D)–                              | ·iii                     |
|     | (c) (A) –ii (B)–iii (C <mark>)–</mark> iv (D)–i                                                                                                                                              | (d) (A)-iii (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | –i (C)–ii (D)–                                | iv                       |
| 4.  | Among the following the number of anhy                                                                                                                                                       | drides of acids are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | [NET JUNE 2011]          |
|     | CO, No, N <sub>2</sub> O, B <sub>2</sub> O <sub>3</sub> , N <sub>2</sub> O <sub>5</sub> , SO <sub>3</sub> and P <sub>4</sub> O <sub>10</sub> .                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                          |
|     | (a) 3 (b) 4                                                                                                                                                                                  | (c) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) 6                                         |                          |
| 5.  | Lewis acidity of BCl <sub>3</sub> , BPh <sub>3</sub> and BMe <sub>3</sub> wit                                                                                                                | h respect to pyridine fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ollows the ord                                | er <b>[NET DEC 2011]</b> |
|     | (a) $BCl_3 > BPh_3 > BMe_3$                                                                                                                                                                  | (b) $BMe_3 > BPh_3 > BCh_3 > $ | Cl <sub>3</sub>                               |                          |
|     | (c) $BPh_3 > BMe_3 > BCl_3$                                                                                                                                                                  | (d) $BCl_3 > BMe_3 > BP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>p</sup> h <sub>3</sub>                   |                          |
| 6.  | Among the following pairs                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | [NET DEC 2011]           |
|     | (1) Oxygen-sulfur (2) n                                                                                                                                                                      | itrogen –phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                          |
|     | (3) Phosphorous arsenic (4) cl                                                                                                                                                               | niorine-iodine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200 1-1 1                                     | 1                        |
|     | I nose in which the first ionization energy $(a)$ (1) and (2) only (b) (1) and (2) only                                                                                                      | les differ by more than $(2)$ and $(2)$ and $(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) (2) and (4)                               | are:                     |
| 7   | The reaction between NH4Br and Na me                                                                                                                                                         | tal in liquid ammonia (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (u) (s) anu (4<br>(solvent) resul             | ts in the products       |
| 7.  | The reaction between NII4DI and Na me                                                                                                                                                        | tai in nquiu ammonia (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solvencj lesu                                 |                          |
|     | (a) NaBr HBr (b) NaBr Ha                                                                                                                                                                     | (c) H <sub>2</sub> HBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) HE                                        | Rr Ha                    |
| 8   | The meterial that exhibits the highest ele                                                                                                                                                   | ectrical conductivity an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nong the follow                               | wing sulfur-nitrogen     |
| 0.  | compound is                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | liong the lono                                | INET DEC 2011]           |
|     | (a) $S_4N_4$ (b) $S_7 NH$                                                                                                                                                                    | (c) S <sub>2</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                            | $(d) (SN)_{v}$           |
| 9.  | A Sodalite cage in zeolites is                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 2                                           | [NET DEC 2011]           |
| -   | (a) a truncated tetrahedron                                                                                                                                                                  | (b) an icosahe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | edron                                         |                          |
|     | (c) a truncated octahedron                                                                                                                                                                   | (d) a dodecah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ledron                                        |                          |
| 10. | The final product (s) of the reaction P(O                                                                                                                                                    | $R)_3 + R'X is/are$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | [NET DEC 2011]           |
|     | (a) R'PO(OR) <sub>2</sub> and RX                                                                                                                                                             | (b) [R'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PO(OR)2] X                                    |                          |
|     | (c) $[R'RPO_2(OR)]X$                                                                                                                                                                         | (d) RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathbf{R}'$ and $\mathbf{p}(\mathbf{OR})_2$ | Х                        |
|     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                          |

@madchemclasses 57880546666 WhatsApp 7380546666

Main Group

| 11. | At any temperature for the                          | ne following read                             | ction (D and T are deu                           | iterium and tri                                        | tium respectively) |
|-----|-----------------------------------------------------|-----------------------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------|
|     | correct statement is :                              |                                               |                                                  |                                                        | [NET DEC 2011]     |
|     | (A) HCl + F $\rightarrow$ HF + Cl,                  | (B) DCl + F                                   | (C) TCl + F $\rightarrow$ Cl                     |                                                        |                    |
|     | (a) (A) is fastest                                  | (b) (B) is fast                               | cest (c) (C                                      | ) is fastest                                           |                    |
|     | (d) All the above reaction                          | is have the same                              | rate constant                                    |                                                        |                    |
| 12. | The styx code of $B_4H_{10}$ is                     | :                                             |                                                  |                                                        | [NET DEC 2011]     |
|     | (a) 4120 (b)                                        | 4220                                          | (c) 4012                                         | (d) 32                                                 | 03                 |
| 13. | Bayer's process involves.                           |                                               |                                                  |                                                        | [NET DEC 2011]     |
|     | (a) Synthesis of B <sub>2</sub> H <sub>6</sub> from | n Na <sub>B</sub> H4                          | (b) Synthesis                                    | s of NaBH <sub>4</sub> from                            | n borax            |
|     | (c) Synthesis of NaBH <sub>4</sub> fr               | om B <sub>2</sub> H <sub>6</sub>              | (d) Synthesis                                    | s of B <sub>3</sub> N <sub>3</sub> H <sub>6</sub> from | $m B_2 H_6$        |
| 14. | The size of the d orbitals                          | in Si, P, S and Cl                            | follows the order.                               |                                                        | [NET JUNE 2012]    |
|     | (a) $Cl > S > P > Si$ (b)                           | Cl > P > S > Si                               | (c) P > S > Si > Cl                              | (d) Si > P > S                                         | > Cl               |
| 15. | The strength of $p_x-d_{\pi}$ box                   | nding in E–O (E =                             | = Si, P, S and Cl) follov                        | vs the order.                                          | [NET JUNE 2012]    |
|     | (a) Si $- 0 > P - 0 > S - 0 > 0$                    | Cl-0                                          | (b)P-0 > Si -                                    | 0 > S - 0 > Cl - C                                     | )                  |
|     | (c) $S-0 > Cl-0 > P-0 > Si$                         | -0                                            | (d) Cl-0 > S-                                    | 0 > P - 0 > Si - 0                                     | )                  |
| 16. | The quantitative determi                            | nation of N <sub>2</sub> H <sub>4</sub> w     | vith KlO3 prcceds in a                           | mixture of H <sub>2</sub> (                            | O/CCl4 as follows  |
|     | $N_2H_4 + KlO_3 + 2HCl \rightarrow N_2$             | + KCl + ICl + 3H                              | 20                                               |                                                        |                    |
|     | The end point for the titr                          | imetric reaction                              | is :                                             |                                                        | [NET JUNE 2012]    |
|     | (a) Consumption of N <sub>2</sub> H <sub>4</sub>    |                                               |                                                  |                                                        |                    |
|     | (b) ICl formation                                   |                                               |                                                  |                                                        |                    |
|     | (c) Disappearance of the                            | yell <mark>o</mark> w co <mark>lor due</mark> | e to Cl <sub>2</sub> in <mark>CCl laye</mark> r. |                                                        |                    |
|     | (d) Displacement of the r                           | od <mark>co</mark> lor due to I               | <sup>2</sup> in CCl <sub>4</sub> layer.          |                                                        |                    |
| 17. | Among the halides, NCl <sub>3</sub> (               | A), <mark>P</mark> Cl <sub>2</sub> (B) and A  | AsCl₃(C), those which                            | product two d                                          | ifferent acids.    |
|     |                                                     |                                               |                                                  |                                                        | [NET JUNE 2012]    |
|     | (a) A and B (b)                                     | A and C                                       | (c) B and C                                      | (d) A, B and C                                         | 2                  |
| 18. | The decreasing order of                             | dipole moment o                               | f molecules is                                   |                                                        | [NET JUNE 2012]    |
|     | (a) $NF_3 > NH_3 > H_2O$                            |                                               | (b) $NH_3 > NF_2 > H_2O$                         | )                                                      |                    |
|     | (c) $H_2O > NH_3 > NF_3$                            |                                               | (d) $H_2O > NF_2 > NH_3$                         | 8                                                      |                    |
| 19. | The correct structure of                            | $P_4S_3$ is :                                 | 0                                                |                                                        | [NET JUNE 2012]    |
|     |                                                     |                                               | P                                                | R                                                      | 101                |
|     | S S S                                               |                                               | s´ s                                             | s                                                      |                    |
|     | (a) $\dot{P} - \dot{P}$ (b) S=                      | P-S-P=S (                                     | (c) $P - P = S$ (d)                              |                                                        |                    |
|     | P                                                   | P                                             |                                                  |                                                        |                    |
|     |                                                     |                                               |                                                  | II<br>S                                                |                    |
| 20. | The most used acid catal                            | yst in oil industr                            | y and the relevant pro                           | ocess are respe                                        | ectively           |
|     |                                                     |                                               |                                                  |                                                        | [NET JUNE 2012]    |
|     |                                                     |                                               |                                                  |                                                        |                    |

- (a) Aluminophosphate and reforming
- (b) Aluminosilicate and cracking

Visit On

www.madchemclasses.online

E

- (c) Aluminosilicate and reforming
- (d) Aluminophosphate and cracking
- 21. The total number of Cu–O bonds present in the cyrstalline copper (II) acetate monohydrate is :

@madchemclasses

@Madchem Classes Chemistry

[NET DEC 2012]





(a) 10 (b) 6 (c) 8 (d) 4 The electronegativity differences is the highest for the pair 22. [NET DEC 2012] (a) Li, Cl (b) K, F (c) Na, Cl (d) Li, F Boric acid is a weak acid in aqueous solution. But its acidity increases significantly in the presence 23. of ethylene glycol, because. [NET DEC 2012] (a) ethylene glycol releases additional H<sup>+</sup> (b)  $B(OH)_4^-$  is consumed in forming a compound with ethylene glycol. (c) ethylene glycol neutralizes H<sup>+</sup> released by boric acid. (d) Boric acid dissociates better in the mixed-solvent. 24. Silicates with continuous 3d frame work ae [NET DEC 2012] (c) Phyllo-silicates (a) Neso-silicates (b) Soro-silicates (d) Tecto-silicates 25. Which of the following pairs has the highest difference in their firs ionization energy? **[NET JUNE 2013]** (a) Xe, Cs (b) Kr, Rb (c) Ar, K (d) Ne, Na Which of the following is used as propellant for whipping creams? 26. **[NET JUNE 2013]** (b) NO (c)  $N_2O_3$ (d)  $N_2O_5$ (a)  $N_2O$ 27. Flame proof fabrices contain **[NET JUNE 2013]** (a)  $H_2NC(0) NH_2$ .  $Na_2SO_4$ (b)  $H_2NC(S)$  NH2.  $Na_2SO_4$ (c)  $H_2NC(O)NH_2$ ,  $PO_4$ (d)  $H_2NC(S)$  NH<sub>2</sub>.  $H_3PO_4$ 28. Among the compounds A-D, those which hydrolyse easily are **[NET JUNE 2013]** (a)  $NCI_3$ (b)  $NF_3$ (c) BiCl<sub>3</sub> (d)  $PCl_3$ Which of the pairs will generally result in tetrahedral coordination complexes, when ligands are 29. **[NET JUNE 2013]** Cl- or OH-Electron change in reduction of Ce(SO<sub>4</sub>)<sub>2</sub>, KMnO<sub>4</sub>, HNO<sub>2</sub> and I<sub>2</sub> with hydrazine in acidic medium, 30. respectively is **[NET JUNE 2013]** (a) 1e, 1e, 2e and 4e (b) 1e, 3e, 2e and 4e (c) 2e, 3e, 1e and 4e (d) 2e, 4e, 1e and 3e Among the oxides of nitrogen,  $N_2O_3$ ,  $N_2O_4$  and  $N_2O_5$ , the compound (s) having N–N bond is/are 31. **[NET JUNE 2013]** (b)  $N_2O_3$  and  $N_2O_5$ (c)  $N_2O_3$  and  $N_2O_4$ (a)  $N_2O_4$  and  $N_2O_5$ (d)  $N_2O_5$  only 32. The correct equilibrium order for the interconversion of different forms of SiO<sub>2</sub> is **[NET JUNE 2013]** (a) Tridymite  $\rightleftharpoons$  quartz  $\rightleftharpoons$  cristobalite  $\rightleftharpoons$  liquid SiO<sub>2</sub> (b) quartz  $\rightleftharpoons$  Tridymite  $\rightleftharpoons$  cristobalite  $\rightleftharpoons$  liquid SiO<sub>2</sub> (c) quartz  $\rightleftharpoons$  cristobalite  $\rightleftharpoons$  tridymite  $\rightleftharpoons$  liquid SiO<sub>2</sub> (d) Cristobalite  $\rightleftharpoons$  Tridymite  $\rightleftharpoons$  quartz  $\rightleftharpoons$  liquid SiO<sub>2</sub> 33. Commonly used scintillator for measuring radiation is [NET DEC 2013] (a) NaI(Al) (b) NaI(Tl) (c) CsI(TI) (d)CsI(AI) 34. Among the molten alkali metals, the example of an immuscible pair (in all proportions) is [NET DEC 2013] (a) K and Na (b) K and Cs (c) Li and Cs (d) Rb and Cs 35. Among the following, an example of a hypervalent species is [NET DEC 2013] (a)  $BF_3$ .  $OEt_2$ (d)  $Sb_2S_3$ (b)  $SF_4$ (c)  $[PF_6]^-$ @Madchem Classes Chemistry Visit On @madchemclasses @madchemclasses 7880546666  $\bigcirc$ 

w.madchemclasses.online

**Main Group** 

4

- 36. Treatment of CIF<sub>3</sub> with SbF<sub>5</sub> leads to the formation of a/an(a) Polymeric material(b) covalent cluster
  - (c) ionic compound (d) lewis acid- base adduct
- 37. The reason for the chemical inertness of gaseous nitrogen at room temperature is best adduct

[NET DEC 2013]

[NET DEC 2013]

[NET DEC 2013]

- (a) high bonding energy only (b) electronic configuration
  - (d) High bond energy and HOMO-LUMO gap
- 38. Two tautomeric forms of phosphorus acid are

(c) HOMO-LUMO gap only



- 39. In a specific reaction, hexachlorocyclotriphosphazene, N<sub>3</sub>P<sub>3</sub>Cl<sub>6</sub> was reacted with a metal fluoride to obtain mixed halo derivatives namely N<sub>3</sub>P<sub>3</sub>Cl<sub>5</sub>F(A), N<sub>3</sub>P<sub>3</sub>Cl<sub>4</sub>F<sub>2</sub>(B), N<sub>3</sub>P<sub>3</sub>Cl<sub>3</sub>F<sub>3</sub> (C),N<sub>3</sub>P<sub>3</sub>Cl<sub>2</sub>F<sub>4</sub>(D), N<sub>3</sub>P<sub>3</sub>ClF<sub>5</sub>(E). Compositions among these which can give isomeric products are [NET DEC 2013]
  (a) A, B and C
  (b) B, C and D
  (c) C, D and E
  (d) E, A and B
- 40. Xenon forms several fluorides and oxofluorides which exihibit acidic behaviour. The correct sequence of descending Lewis acidity among the given species is represented by [NET DEC 2013]
  (a) XeF<sub>6</sub> > XeOF<sub>4</sub> > XeF<sub>4</sub> > XeO<sub>2</sub>F<sub>2</sub>
  (b) XeOF<sub>4</sub> > XeO<sub>2</sub>F<sub>2</sub> > XeOF<sub>4</sub> > XeF<sub>6</sub>
  (c) XeF<sub>4</sub> > XeO<sub>2</sub>F<sub>2</sub> > XeOF<sub>4</sub> > XeF<sub>6</sub>
  (d) XeF<sub>6</sub> > XeOF<sub>4</sub> > XeO<sub>2</sub>F<sub>2</sub>
- 41.The gases SO2 and SO3 were reacted separately with CIF gas under ambient conditions. The major<br/>product expected from the two reactions respectively, are<br/>(a) SOF2 and CIOSO2F[NET DEC 2013]<br/>(b) SOF2 and SO2F2
  - (c)  $SO_2CIF$  and  $SO_2F_2$  (d)  $SO_2CIF$  and  $ClOSO_2F$
- 42. The correct statement for ozone is(a) It absorbs radiations in wavelength region 290–320 nm.
  - (b) It is mostly destroyed by NO radical in atomsphere
  - (c) It is non toxic even at 100 ppm level
  - (d) Its concentration near poles is high due to its paramagnetic nature.
- 43. The solid state structure of aluminum fluoride is



 $\bigcirc$ 

[NET DEC 2013]



@madchemclasses





The correct order of the size of S, S<sup>2-</sup>, S<sup>2+</sup> and S<sup>4+</sup> species is, 50. **[NET JUNE 2014]** (a)  $S > S^{2+} > S^{4+} > S^{2-}$  (b)  $S^{2+} > S^{4+} > S^{2-} > S$  (c)  $S^{2-} > S > S^{2+} > S^{4+}$  (d)  $S^{4+} > S^{2-} > S^{2+} > S^{2+}$ Among F<sup>-</sup>, Na<sup>+</sup>, O<sup>2-</sup> and Mg<sup>2+</sup> ions, those having the highest and the lowest ionic radii respectively 51. [NET DEC 2014] are (a)  $O^{2-}$  and Na<sup>+</sup> (b)  $F^-$  and  $Mg^{2+}$ (c)  $O^{2-}$  and  $Mg^{2+}$ (d)  $Mg^{2+}$  and  $O^{2-}$ The correct order of the retention of cations on a sulfonated cation exchange resin column is 52. [NET DEC 2014] (a)  $Ag^+ > K^+ > Na^+ > Li^+$ (b)  $K^+ > Na^+ > Ag^+ > Li^+$ (d)  $Li^+ > Na^+ > Ag^+ > K^+$ (c)  $Li^+ > Na^+ > K^+ > Ag^+$ The main products of the reaction of equimolar quantities of XeF<sub>6</sub> with NaNO<sub>3</sub> are 53. [NET DEC 2014] (a) XeOF<sub>4</sub>, NaF and NO<sub>2</sub>F (b) XeO<sub>2</sub>F<sub>2</sub>, NaF, NOF and F<sub>2</sub> (c) XeOF<sub>4</sub>, NaNO<sub>2</sub> and F<sub>2</sub> (d)  $XeF_4$ ,  $NaNO_2$  and  $F_2O$ 54. 12–Crown –4 binds with the alkali metal ions in the following order : [NET DEC 2014]  $Li^+ >> Na^+ > K^+ > Cs^+$ . It is due to the (a) Right size of cation (b) Change in entropy being positive (c) Conformational flexibility of crown ether (d) Hydrophobicity of crown ether The species having the strongest gas phase proton affinity among the following, **[NET JUNE 2015]** 55. (a) N<sup>3-</sup> (b)  $NF_3$  $(c) NH_3$ (d)  $N(CH_3)_3$ 56. All forms of phosphorus upon melting, exist as **[NET JUNE 2015]** (b) (c)  $n(\underline{P} = \underline{P})$ (d) 57. The magnitude of the stability constants for K<sup>+</sup> ion complexes of the following supra-molecular

[NET JUNE 2015]



(a) 
$$B > A > C$$
 (b)  $C > A > B$  (c)  $A > B > C$  (d)  $C > B > A$   
58. The oxoacid of phosphorus having P atoms in +4, +3, and +4 oxidation states respectively, is  
(NET JUNE 2015]  
(a) H5P3010 (b) H3P307 (c) H5P308 (d) H5P307  
59. Considering the inert pair effect on lead, the most probable structure of PbR2[R = 2. 6-CcH3(2, 6-Pr2C4H3)2] is [NET JUNE 2015]  
(a)  $R_{12}^{(m)} P_{12}^{(m)} P_{13}^{(m)} P_{12}^{(m)} P_{1$ 



@madchemclasses

7880546666 7380546666

 $\odot$ 

@madchemclasses

| 67. | (a) $XeF_6$ only (b) $XeF_6$ and $XeF_4$<br>Among KF, $SnF_4$ and $SbF_5$ , solute(s) that in                                                                                                | (c) XeF <sub>6</sub> and XeF <sub>2</sub><br>creases(s) the conce | (d) XeF <sub>4</sub> and XeF <sub>2</sub><br>entration of Br $F_4^-$ in BrF <sub>3</sub> , is / are<br><b>[NET JUNE 2016]</b>          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 68. | (a) KF only (b) KF and $SnF_4$ (c) $SnF$<br>Among the following, choose the correct p<br>ammonia in $CCl_4$ :<br>$NH_4Cl(A) S_4N_4(B) S_8(C) and S_2N_2Cl_2(D)$                              | <sup>4</sup> and SbF <sub>5</sub> (d) KF<br>roducts that are form | $F_{5}$ , SnF <sub>4</sub> and SbF <sub>5</sub><br>ned in the reaction of S <sub>2</sub> Cl <sub>2</sub> with<br><b>[NET DEC 2016]</b> |
| 69. | (a) A, B and C (b) A, B and D<br>The final product(s) of the reaction of arac<br>(a) $[BH_3. NMe_3]$ and $[B_3H_7. NMe_3]$<br>(b) $[BH_2(NMe_3)_2]^+ [B_3H_8]^-$<br>(c) $[B_4H_{10}. NMe_3]$ | (c) B, C and D<br>chno borane, B4H10 v                            | (d) A, C and D<br>with NMe3 is/are <b>[NET DEC 2016]</b>                                                                               |
|     | (d) $[B_4H_{10}$ . NMe <sub>3</sub> ] and $[BH_2(NMe_3)_2]^+[B_3H_8]$                                                                                                                        | 3]-                                                               |                                                                                                                                        |
| 70. | Both potassium and sulfuric acid form inte                                                                                                                                                   | ercalation compound                                               | ls with graphite. The graphite layer:                                                                                                  |
|     | are                                                                                                                                                                                          |                                                                   | [NET JUNE 2017]                                                                                                                        |
|     | (a) Reduced in both the cases                                                                                                                                                                |                                                                   |                                                                                                                                        |
|     | (b) Oxidized in both the cases                                                                                                                                                               |                                                                   |                                                                                                                                        |
|     | (c) oxidized in the case of potassium and r                                                                                                                                                  | educed in the case of                                             | f sulphuric acid                                                                                                                       |
| 71  | (d) Reduced in the case of potassium and (                                                                                                                                                   | oxidized in the case o                                            | $\sum_{n=1}^{\infty} \left[ DMO + O + 1^3 - INET DEC 2017 \right]$                                                                     |
| /1. | (a) It has a Koggin structure                                                                                                                                                                | ospholilolybuate and                                              |                                                                                                                                        |
|     | (a) It has a Reggin structure.<br>(b) Phosphorus is in $\pm 5$ ovidation state                                                                                                               |                                                                   |                                                                                                                                        |
|     | (c) It is extremely basic                                                                                                                                                                    |                                                                   |                                                                                                                                        |
|     | (d) It forms crystalline precipitates with []                                                                                                                                                | $R_4 Nl^+ (R = hulkyl or ;$                                       | arvl group)                                                                                                                            |
| 72. | A binary fluoride (Z) of xenon combines w                                                                                                                                                    | ith two moles of NaF                                              | F to give a product which on                                                                                                           |
|     | hearting to 100°C affords compounds A. th                                                                                                                                                    | ie alkaline hvdrolvsis                                            | s of A gives perxenate salt. Z and A                                                                                                   |
|     | are, respectively,                                                                                                                                                                           | , and the second second                                           | [NET JUNE 2018]                                                                                                                        |
|     | (a) $XeF_2$ and $XeF_4$ (b) $XeF_4$ and $XeF_6$                                                                                                                                              | (c) $XeF_6$ and $XeF_4$                                           | (d) $XeF_6$ and $XeF_6$                                                                                                                |
| 73. | Consider the following statements for Be <sub>2</sub> (                                                                                                                                      | $Cl_4(I)$ , $B_2Cl_4(II)$ and $G$                                 | Ga <sub>2</sub> Cl <sub>4</sub> (III): <b>[NET JUNE 2018]</b>                                                                          |
|     | (A) There is an M–M(m = Be, B, Ga) bond i                                                                                                                                                    | n all.                                                            | 1 1/201                                                                                                                                |
|     | (B) The oxidation state of Be, B and Ga is +                                                                                                                                                 | 2.                                                                |                                                                                                                                        |
|     | (C) The geometry around the central atom                                                                                                                                                     | is planar for all.                                                |                                                                                                                                        |
|     | (D) The geometry around the central atom                                                                                                                                                     | is planar in I and II                                             | only.                                                                                                                                  |
|     | The correct statement(s) is / are                                                                                                                                                            |                                                                   |                                                                                                                                        |
|     | (a) A, B and C (b) A and B                                                                                                                                                                   | (c) D only                                                        | (d) B, C and D                                                                                                                         |
| 74. | The reaction of decaborane $B_{10}H_{14}$ with ac                                                                                                                                            | etylene in the preser                                             | nce of Et <sub>2</sub> S gives [NET DEC 2018]                                                                                          |
|     | (a) $C_2B_{10}H_{12}$ (b) $C_2B_8H_{10}$                                                                                                                                                     | (c) $C_2B_{10}H_{14}$                                             | (d) $C_2B_9H_{11}$                                                                                                                     |
| 75. | In compound $N_3P_3F_6$ , the geometry around                                                                                                                                                | 1 nitrogen and phosp                                              | ohorus, respectively, are                                                                                                              |
|     |                                                                                                                                                                                              |                                                                   | [NET DEC 2018]                                                                                                                         |
|     | (a) Pyramidal and tetrahedral                                                                                                                                                                | (b) planar and tetral                                             | nearal                                                                                                                                 |
|     | (c) pyrannuai anu pianar                                                                                                                                                                     | (u) planar and trigol                                             | nai bipyrainiuai                                                                                                                       |
|     |                                                                                                                                                                                              |                                                                   |                                                                                                                                        |

| 76. | The number of 2c-                             | 2e bonds ('x') of a mo                              | lecule is related to 'N'                                  | (valence elect      | rons) and 'n' (skeletal       |
|-----|-----------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|---------------------|-------------------------------|
|     | atoms) by $x = (8n - 1)^{-1}$                 | N)/2. For $P_4S_3$ , the va                         | lues of x, N and n, res                                   | pectively, are      | [NET DEC 2018]                |
|     | (a) 7, 38, 9                                  | (b) 7, 24, 9                                        | (c) 9, 38, 7                                              | (d) 9, 24, 7        |                               |
| 77. | $B_2H_6$ reacts with                          |                                                     |                                                           |                     | [NET DEC 2018]                |
|     | (A) water to give be                          | oric and H <sub>2</sub>                             | (B) oxygen to give E                                      | $B_2O_3$ and $H_2$  |                               |
|     | (C) Water to give b                           | oric acid and H <sub>2</sub> O                      | (D) oxygen to give E                                      | $B_2O_3$ and $H_2O$ |                               |
| 78. | The species that re                           | esults by replacing of                              | ne quarter of Si(IV) in                                   | n pyrophyllite      | $[Al_2(OH)_2Si_4O_{10}]$ with |
|     | Al(III) [charge bala                          | nce by K(I)] is                                     |                                                           |                     | [NET JUNE 2019]               |
|     | (a) muscovite                                 | (b) phlogopite                                      | (c) montmorillonite                                       | e (d) ta            | lc                            |
| 79. | The oxidation state                           | of sulphur in the dith                              | nionous and dithionic                                     | acids, respectiv    | vely, are                     |
|     |                                               |                                                     |                                                           |                     | [NET JUNE 2019]               |
| 0.0 | (a) +4, +6                                    | (b) +4, +5                                          | (c) +3, +5                                                | (d) +3, +6          |                               |
| 80. | The total number o                            | f symmetry elements                                 | in diborane molecule                                      | IS                  | [NET JUNE 2019]               |
| 0.1 | (a) 2                                         | (b) 4                                               | (c) 6                                                     | (d) 8               | <b>1</b>                      |
| 81. | In the synthesis of                           | f polydimethylsiloxar                               | ie, the chain forming                                     | , branching ar      | id terminating agents         |
|     | respectively, are                             |                                                     |                                                           |                     | [NET JUNE 2019]               |
|     | (a) $Me_2SiCl_2$ , $Me_3SiCl_2$               | $CI and MeSiCI_3$ (b) M                             | $Ie_2SICI_2$ , $MeSICI_3$ and $N$                         |                     |                               |
| 02  | (c) MeSiCI <sub>3</sub> , Me <sub>2</sub> SiC | $I_2$ and Me <sub>3</sub> SiCi (d) M                | $Ie_2SICI_2$ , MeSICI <sub>3</sub> and N                  | /le <sub>4</sub> S1 |                               |
| 82. | Choose the correct                            | statement(s) among                                  | the following                                             |                     | [NET JUNE 2019]               |
|     | (I) LIF IS more solu                          | duction not on tial [E                              | ter.                                                      | than that of        | Ne                            |
|     | (III) The heat of hu                          | duction of $\mathbf{I}_{it}(\mathbf{g})$ is greater | of LI IS MOLE negative                                    |                     | Nd.                           |
|     | (III) The heat of hy                          | (b) Lond III                                        |                                                           | (d) III only        |                               |
| 02  | (a) I allu II<br>Chaosa tha correct           | (D) I allu III                                      | (C) II allu III                                           | (a) in only         | INET HINE 2010]               |
| 05. | (I) The dihedral and                          | glo in OsEs is O                                    | le lollowing                                              |                     | [NET JUNE 2019]               |
|     | (II) OF is generally                          | gie in 0212 is 0°.                                  | a fluorino gas with dili                                  | uto (2%) 20. N      | OH solution                   |
|     | (III) $O_{2}F_{2}$ can be re-                 | dily roduced by HaS                                 | g nuor nie gas with un                                    | ute (2 %) aq. Na    |                               |
|     | (iii) 0212 call be rea                        | (b) I II and III                                    | (c) II and III only                                       | (d) II only         |                               |
| 84  | The common hents                              | city observed for coo                               | rdination of C <sub>co</sub> to me                        | tal center is       | [NFT DFC 2019]                |
| 01. | (a) 2                                         | (h) 4                                               | (c) 5                                                     | (d) 6               |                               |
| 85. | The correct statem                            | ents for dithionite and                             | d dithionate anions fro                                   | om the followi      | ng are                        |
| 001 |                                               |                                                     |                                                           |                     | <b>INET DEC 2019</b>          |
|     | (a) Both have S-S b                           | ond                                                 |                                                           |                     | []                            |
|     | (b) Both are dianio                           | nic                                                 |                                                           |                     |                               |
|     | (c) Oxidation state                           | of sulphur is +3 and +                              | -5. respectively                                          |                     |                               |
|     | (d) Sulphur in dithi                          | onate has lone pair o                               | f electrons.                                              |                     |                               |
|     | (a) A, B and C                                | (b) A, B and D                                      | (c) B, C and D (d) A                                      | and B only          |                               |
| 86. | The roleof H <sub>3</sub> PO <sub>4</sub>     | in the estimation of                                | Fe(II) with K <sub>2</sub> Cr <sub>2</sub> O <sub>2</sub> | using dipheny       | lamine sulphonate as          |
|     | indicator is to                               |                                                     |                                                           | 0 1 9               | [NET DEC 2019]                |
|     | (a) Avoid aerial oxi                          | dation of Fe (II)                                   |                                                           |                     |                               |
|     | (b) reduce the elect                          | trode potential of Fe <sup>3</sup>                  | $^{+} \rightarrow \mathrm{Fe}^{2+}$                       |                     |                               |
|     | (c) Stabilize the ind                         | licator                                             |                                                           |                     |                               |
|     | Visit On                                      | Amadahamalassas                                     | @Madaham Classes Char                                     | mistry @made        |                               |
| ¢   | www.madchemclasses.on                         | line                                                | @madchem Classes Chel                                     |                     | WhatsApp 7380546666           |

| 87.      | (d) stabilize K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub><br>The species that results by replacing one quarter of Si(IV) in pyrophyll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ite [Al <sub>2</sub> (OH) <sub>2</sub> Si <sub>4</sub> O <sub>10</sub> ] with |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|          | Al(III) [charge balance by K(I)] is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [NET DEC 2019]                                                                |
|          | (a) muscovite (b) phlogopite (c) montmorillonite (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | talc                                                                          |
| 88.      | The reaction of $IO_3^-$ with I– in aqueous acidic medium results in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [NET DEC 2019]                                                                |
|          | (a) $I_2$ and $H_2O$ (b) $I_2$ and $H_2O_2$ (c) $IO^-$ and $H_2O$ (d) $IO^-$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $d H_2O_2$                                                                    |
| 89.      | The oxidation state of sulphur in the dithionous and dithionic acids, respe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ctively, are                                                                  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [NET DEC 2019]                                                                |
|          | (a) $+4$ , $+6$ (b) $+4$ , $+5$ (c) $+3$ , $+5$ (d) $+3$ , $+6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |
| 90.      | In the synthesis of polydimethylsiloxane, the chain forming, branching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and terminating agents                                                        |
|          | respectively, are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [NET DEC 2019]                                                                |
|          | (a) Me <sub>2</sub> SiCl <sub>2</sub> , Me <sub>3</sub> SiCl and MeSiCl <sub>3</sub> (b) Me <sub>2</sub> SiCl <sub>2</sub> , MeSiCl <sub>3</sub> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d Me <sub>3</sub> SiCl                                                        |
|          | (c) MeSiCl <sub>3</sub> , Me <sub>2</sub> SiCl <sub>2</sub> and Me <sub>3</sub> SiCl (d) Me <sub>2</sub> SiCl <sub>2</sub> , MeSiCl <sub>3</sub> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d Me4Si                                                                       |
| 91.      | The correct statements regarding B among the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [NET DEC 2019]                                                                |
|          | (I) Nuclear spin of <sup>11</sup> B is greater than that of <sup>10</sup> B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |
|          | (II) The polarities o <mark>f B</mark> –H bond and C–H bonds are opposite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |
|          | (III) Cross–section of neutron absorption for <sup>10</sup> B is much more than that o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f <sup>11</sup> B                                                             |
|          | (IV) B reacts with boiling aq. NaOH solution to form NaB(OH) <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |
|          | (a) II and III (b) I and II (c) III and IV (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | II and IV                                                                     |
| 92.      | Choose the correct statement(s) among the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [NET DEC 2019]                                                                |
|          | (I) LiF is more soluble than $LiClO_4$ in water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|          | (II) The standard reduction potential [E <sup>o</sup> ] of Li is more negative than that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of Na.                                                                        |
|          | (III) The heat of hydration of $Li^+(g)$ is greater than that of $Na^+(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |
|          | (a) I and II (b) I and III (c) II and III (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | III only                                                                      |
| 93.      | During the binding of $O_2$ to myoglobin (consider heme in xy-plane) the mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | olecular orbital of $O_2$ and                                                 |
|          | atomic orbital of Fe involved in the formation of the $\sigma$ -bond is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [NET NOV 2020]                                                                |
|          | (a) $\pi^*$ and $dz^2$ (b) $\pi^*$ and $dxz$ (c) $\pi$ and $dxz$ (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\pi$ and dz <sup>2</sup>                                                     |
| 94       | For the given reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [NET NOV 2020]                                                                |
| <i>,</i> | $[*C_0(L)_*]^{2+} + [C_0(L)_*]^{3+} \rightarrow [*C_0(L)_*]^{3+} + [C_0(L)_*]^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |
|          | the correct statement with respect to the rate of electron transfer process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ic Contraction                                                                |
|          | o-nhen – o-nhenanthroline: *Co is labeled atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |
|          | (a) fast electron transfer : $I = NH_{0}$ : $n = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |
|          | (a) last electron transfer : $L = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |
|          | (b) Slow electron transfer: $I = 0$ -pitell, $II = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |
|          | (c) Very slow electron transfer, $L = 0$ nhon $\cdot n = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |
| 05       | Identify the correct statement for the two reactions given below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [NET EER 2022]                                                                |
| 95.      | $SF_6$ and |                                                                               |
|          | $Xe + PtF_6 \longrightarrow [Xe] + [PtF_6]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |
|          | $XeF_4 + Me_4NF \rightarrow [Me_4N]^+ [XeF_5]^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|          | (a) Xe and XeF 4 both act as acids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |
|          | (b) At and Aer 4 Dolli act as bases.<br>(c) Ye acts as an acid and YeF, avts as a base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |
| -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |
|          | Visit On<br>www.madchemclasses.online                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | adchemclasses 5 7880546666<br>WhiteApp 7380546666                             |

|                                              | (d) Xe acts as a base                                      | and XeF4 acts as an aci                                           | d.                                     |                                             |                                                  |
|----------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------------------|
| 96.                                          | Which of the follow                                        | ing reaction(s) do(es)N                                           | OT occur                               |                                             | [NET FEB 2022]                                   |
|                                              | (i) [NPCl <sub>2</sub> ] <sub>3</sub> + 6NaF-              | $\frac{MeCN}{reflux} [NPF_2]_3 + 6N$                              | aCl                                    |                                             |                                                  |
|                                              | (ii) n PCl5 + n NH4Cl                                      | $\frac{C_6H_5Cl}{reflux}$ [NPCl <sub>2</sub> ] <sub>n</sub> + 4 n | HCl [n = 3, 4, 5 .                     | ]                                           |                                                  |
|                                              | (iii)n PF <sub>5</sub> + n NH <sub>4</sub> F $\frac{d}{d}$ | $E_6 H_5 Cl$ [NPF <sub>2</sub> ] <sub>n</sub> + 4 n HF            | [n = 3, 4, 5]                          |                                             |                                                  |
|                                              | (a) (i) and (iii)                                          | (b) (i) and (i                                                    | i)                                     | (c) (i) only                                | (d) (iii) only                                   |
| 97.                                          | Choose the correct s                                       | statement(s) from the f                                           | ollowing :                             |                                             | <b>INET FEB 20221</b>                            |
|                                              | (i) The trend in Lew                                       | is acidity among silicor                                          | n halides is Sil₄ <                    | < SiBr4 < SiCl4 < SiF4.                     | []                                               |
|                                              | (ii) Tin(II) chloride                                      | can act as a Lewis acid a                                         | and not as a Lev                       | vis base.                                   |                                                  |
|                                              | (iii) Aluminosilicate                                      | s can display Bronsted                                            | acidity.                               |                                             |                                                  |
|                                              | (a) (i) and (ii)                                           | (b) (i) and (i                                                    | ii)                                    | (c) (ii) and (iii)                          | (d) (ii) only                                    |
| 98                                           | Which of the statem                                        | ents (A-D) given below                                            | vare correct for                       | $B_{2}H_{4}$ molecule ·                     | [NET FEB 2022]                                   |
| <i>y</i> 0.                                  | A Addition of $Ft_0$                                       | $BF_2 NaBH_4$ in a polyeth                                        | er solvent produ                       | uces B <sub>2</sub> H <sub>4</sub>          |                                                  |
|                                              | R It has $D_{a,1}$ summer                                  | bi 3 Nabii4 ili a polyeth                                         | er solvent prou                        | uces D <sub>2</sub> 11 <sub>6</sub> .       |                                                  |
|                                              | C Reaction of $B_2H_{c}$                                   | with NMea gives MeaN                                              | RH <sub>2</sub>                        |                                             |                                                  |
|                                              | D. It is diamagnetic                                       |                                                                   | D113.                                  |                                             |                                                  |
|                                              | $(a) \land B and C$                                        | (b) A C and                                                       | П                                      | (c) A and B only                            | (d) B and D only                                 |
| 99                                           | Consider the follow                                        | ving statements describ                                           | ing the propert                        | ies of (CE <sub>2</sub> ) <sub>2</sub> B CO | (u) <i>D</i> and <i>D</i> only<br>[NET SEP 2022] |
| <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | A. The CO stretching                                       | ng frequency in IR is le                                          | ess than 2143 c                        | $m^{-1}$ .                                  |                                                  |
|                                              | B. The 19F NMR s                                           | pectrum shows one sin                                             | glet resonance                         | only.                                       |                                                  |
|                                              | C. The point group                                         | of (CF <sub>3</sub> ) <sub>3</sub> B.CO is C3v.                   |                                        |                                             |                                                  |
|                                              | D. $(CF_3)_3B.CO$ read                                     | cts with KF to form K[                                            | (CF <sub>3</sub> ) <sub>3</sub> BC(O)F |                                             |                                                  |
|                                              | (a) A,C and D only                                         | (b) C an <mark>d</mark> D only                                    | (c) A, B and                           | l C only (d) A and I                        | ) only                                           |
| 100.                                         | The nucleophilic su                                        | bstitution <mark>of RR'R"Sil</mark>                               | X(R,R',R''=1ky                         | l groups) by a nucleo                       | phile Y gives the product                        |
|                                              | RR'R"SiY. Among                                            | the following.                                                    |                                        |                                             | [NET SEP 2022]                                   |
|                                              | A. Silyliumcation is                                       | s formed during the rea                                           | action.                                |                                             |                                                  |
|                                              | B. It is a second ord                                      | ler reaction.                                                     |                                        |                                             |                                                  |
|                                              | C. The cleavage of                                         | the S1-X bond is not th                                           | e rate determin                        | ing step.                                   |                                                  |
|                                              | D. The product alw                                         | ays shows inversion of                                            | configuration.                         |                                             |                                                  |
|                                              | (a) B and C only                                           | (b) A and B only                                                  | (c) C and D                            | only (d) B C and                            | 1 D only                                         |
| 101                                          | The reaction of HF                                         | with SnO produces P                                               | and with SnCl <sub>4</sub>             | produces O Reaction                         | of one of them $(P, O)$                          |
| 1011                                         | with NaF vields the                                        | species Na <sub>4</sub> [Sn <sub>3</sub> F <sub>10</sub> ].       | Among the follo                        | owing.                                      | [NET SEP 2022]                                   |
|                                              | A. $[Sn_3F_{10}]^{4-}$ is obta                             | ained from P.                                                     | 8                                      | 6,                                          |                                                  |
|                                              | B. In the solid state                                      | , P exhibits a ring struc                                         | cture.                                 |                                             |                                                  |
|                                              | C. Stereogenic lone                                        | pairs of electrons are                                            | presents in both                       | n P and Q.                                  |                                                  |
|                                              | D. Q is weaker Lew                                         | vis acid than P.                                                  |                                        |                                             |                                                  |
|                                              | Identify the correct                                       | statements.                                                       |                                        |                                             |                                                  |
|                                              | (a) A and B only                                           | (b) C and D only                                                  | (c) A,B and                            | C only (d)                                  | B,C and D only                                   |
| 102.                                         | Among Si <sub>3</sub> N <sub>4</sub> , α-Bl                | N, AIN and (SN)x, the                                             | compound with                          | h the highest conducti                      | vity is                                          |
|                                              | (a) $Si_2N_4$                                              | (b) $\alpha_{r}$ BN                                               | $(c) \Delta IN$                        | (d) (SN)                                    | [NE I SEP 2022]                                  |
|                                              | (4) 0101 14                                                |                                                                   |                                        | (u) (514)X                                  |                                                  |
|                                              |                                                            |                                                                   | NJ VV LIA NE                           | 1                                           |                                                  |
| A                                            | Visit On                                                   | @madchemclasses                                                   | @Madchem                               | Classes Chemistry 🦰 @ma                     | dchemclasses 7880546666                          |
| ₩<br>₩                                       | www.madchemclasses.o                                       | nline                                                             |                                        |                                             | WhatsApp 7380546666                              |

| 1. A   | 2. B   | 3. A  | 4. B  | 5. A    | 6. B  | 7. B  | 8. D        | 9. C  | 10. A |
|--------|--------|-------|-------|---------|-------|-------|-------------|-------|-------|
| 11. A  | 12. C  | 13. B | 14. D | 15. D   | 16. D | 17. C | 18. D       | 19. A | 20. B |
| 21. A  | 22. B  | 23. B | 24. D | 25. D   | 26. A | 27. C | 28. D       | 29. C | 30. A |
| 31. C  | 32. B  | 33. B | 34.C  | 35. C   | 36. C | 37. D | 38. A       | 39. B | 40. A |
| 41. D  | 42. A  | 43. C | 44. C | 45. B   | 46. C | 47. A | 48. D       | 49. B | 50. C |
| 51. C  | 52. A  | 53. A | 54. A | 55. A   | 56. A | 57. C | 58. C       | 59. A | 60. A |
| 61. B  | 62. A  | 63. B | 64. A | 65. A   | 66. C | 67. A | 68. A       | 69. A | 70. D |
| 71. C  | 72. D  | 73. C | 74. A | 75. B   | 76. C | 77. B | 78. A       | 79. C | 80. D |
| 81. B  | 82. C  | 83. C | 84. C | 85. A&B | 86. B | 87. A | 88. A       | 89. C | 90. B |
| 91. A  | 92. C  | 93. A | 94. C | 95. D   | 96. D | 97. A | 98. A, C, D | 99. B | 100 A |
| 101. A | 102. D |       | 1     |         |       |       |             |       |       |

# **SOLUTION**

#### 1.

# Ans. (a)

**Sol.** Alkali metals in liq. NH<sub>3</sub> act as source of electrons and are supposed to be a good one-electron reducing agents.

 $m + (x + y)NH_3 \rightarrow [M(NH_3)_x]^+ + [e(NH_3)y]^-$ 

These solvated electrons can reduce  $O_2$  molecule to superoxide ion.

$$[e(NH_3)y] - + O_2 \rightarrow O_2^- + y NH_3$$

These superoxide ions can combine with solvated metal ion to give Alakli metal superoxides.  $[M(NH_3)_x]^+ + O_2^- \rightarrow MO_2^- + xNH_3$ 

#### 2.

Ans. **(b)** (II) (II) (II) Fe<sup>+2</sup> to Fe<sup>+3</sup>,  $[Fe(CN)_6]^{4-}$  to  $[Fe(CN)_6]^{3-}$ , NH<sub>2</sub>OH to Sol. H<sub>2</sub>O<sub>2</sub> oxidize, HNO<sub>3</sub>,  $SO_3^{2-}$  to  $SO_4^{2-}$ KMnO<sub>4</sub>, KIO<sub>4</sub>, Ce(SO<sub>4</sub>)<sub>2</sub> [All are stronger O.A. than H<sub>2</sub>O<sub>2</sub> reduce  $H_2O_2$ ) Note: In the question, only I<sup>+7</sup> and Ce<sup>+4</sup> are in their highest oxidation states, so the only possibility of reduction by H<sub>2</sub>O<sub>2</sub> exists. 3. Ans. (a) Sol. Compound Uses (A)  $Na_3 PO_4$ Water softener, paint stripper Plasticizers (B)  $Ar_3PO_4$ (C)  $Et_3PO_4$ Insecticides (D) CaHPO<sub>4</sub>. 2H<sub>2</sub>O Toothpaste 4. Ans. (b) Sol.  $B_2O_3 + 3H_2O \rightarrow 2H_3BO_3$ (orthoboric acid)  $N_2O_5 + H_2O \rightarrow 2HNO_3$ (Nitric acid)  $SO_3 + 2H_2O \rightarrow H_2SO_8$ (Sulfuric acid)  $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ (Orthphosphoric acid) 5. Visit On @madchemclasses @Madchem Classes Chemistry @madchemclasses 7880546666  $\bigcirc$ w.madchemclasses.online 7380546666

@madchemclasses

7880546666

7380546666

(C

@Madchem Classes Chemistry



Visit On

ww.madchemclasses.online

@madchemclasses



Visit On www.madchemclasses.online

Ans. Sol.



(a)

**(b)** 

(a)

- 20. Ans. 21.
- Ans. Sol.



- 22.
- Ans. (b)
- **Sol.** Among these elements K is least electrongative and F is most electronegative. Therefore electronegativity difference is highest for the pair K,F.

23.

Ans. Sol. B(OH

 $B(OH)_3 + OH \rightleftharpoons [B(OH)_4]^-$ 

**(b)** 

reversible reaction

In presence of ethylene glycol,  $B(OH)_4^-$  is consumed as shown below and boric acid behaves as strong acid.



Ans. (d)

**Sol.** First ionization potential of Ne--2080

First ionization potential of Na-495

1585 eV

ionisation Energy = Difference in ionization potential of Neon and Sodium (Ne–Na) So, 1585 eV is the largest difference in given pairs. The reason being as we move down the group number of electron and proton increases simultaneously with addition of new energy shells so increase in distance from Nucleus to electron is more pronounced as that of increases in electron and proton resultantly  $Z_{eff}$  (effective nuclear charge) decreases and first ionization potential also decreases down the group.

#### 26.

- Ans. (a)
- **Sol.** Nitrous acid (N<sub>2</sub>O) which is commonly known as laughing gas used as a propellant in whipping cream. So, also known as whippits or nangs.

### 27.

## Ans.

**Sol.** The Flame proof fabrices contain urea and phosphoric acid (H<sub>2</sub>NC(O) NH<sub>2</sub>. H<sub>3</sub>PO<sub>4</sub>)

#### 28. Ans. (d)

(c)

(c)

(c)

**Sol.** BiCl<sub>3</sub> is not readily hydrolysed by water to give BiOCl.

#### $BiCl_3 + H_2O \rightarrow BiOCl + 2HCl$

But BiOCl redissolve in conc. HCl to produce BiCl<sub>3</sub> after evaporation. It has quasi molecular structure . PCl<sub>3</sub> is easily hydrolysed by water.

# 29.

### Ans.

**Sol.** Co(II), Zn(II) and Be(II) form tetrahedral complexes with Cl<sup>-</sup> or OH<sup>-</sup>. Be(II) has no d-orbitals, therefore it form tetrahedral complexes. Co(II) and Zn(II) form tetrahedral complexes with halides and OH<sup>-</sup>.

#### 30.

## Ans. (a)

**Sol.**  $Ce(SO_4)_2$  and KMnO<sub>4</sub> gives one electron on reduction with hydrazine in acidic medium and HNO<sub>2</sub> and I<sub>2</sub> gives two electron and four electron on reduction with hydrazine in acidic medium.

# 31.



N-N bond

(B)  $N_2O_4$ : HNO<sub>3</sub> + HNO<sub>2</sub>  $\xrightarrow{-H_2O}$   $N_2O_4$ 

(A)  $N_2O_3$ :  $HNO_2 + HNO_2 \xrightarrow{-H_2O} N_2O_3$ 

О

@madchemclasses



0







 $\left[ \right]$ 



- (ii) It is non toxic even at 1ppm level
- (iii) It is not destroyed by no radial in atmosphere

$${\rm NO} + {\rm O}_3 \rightarrow {\rm NO}_2 + {\rm O}_2 {\rm P}$$

(iv) It absorbs radiation in wave length region 290-320 nm

43.

Ans.

(c) AlF<sub>3</sub> has octahedral arrangement in 3-dimethyl structure which causes high methyl point of AlF<sub>3</sub> Sol. in comparison to AlCl<sub>3</sub>, AlBr<sub>3</sub> and All<sub>3</sub>. AlCl<sub>3</sub> dimer has layered structure.

44.

Ans.

(c)

Sol.

4 E



The diagram clearly indicates the four centered-two electron interaction (4c–2e). This takes place in Li<sub>4</sub>(CH<sub>3</sub>)<sub>4</sub>. The sp3 hybrid orbitals is of carbon while the three s-orbitals are of three surrounding lithium atoms.

| 45.  |                                                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ans. | (b)                                                                                                                                                                      |
| 46.  |                                                                                                                                                                          |
| Ans. | (c)                                                                                                                                                                      |
| Sol. | Ozone is a diamagnetic gas which is of dark blue coloured due to absorption of red light.                                                                                |
|      | $(\lambda = 557 \text{ and } 602 \text{ nm})$                                                                                                                            |
|      | Ozone depliction discovered by J.C. Farman over Halley Bay in Antarctica.                                                                                                |
|      | Ozone also show strong absorption in $\lambda = 255$ UV which good for earth and living beings as this                                                                   |
|      | 'UV-b' is most dangerous                                                                                                                                                 |
|      | $\lambda = 255 = UV - b$                                                                                                                                                 |
| 47.  |                                                                                                                                                                          |
| Ans. | (a)                                                                                                                                                                      |
| Sol. | Chromium is extracted from chromite ore :                                                                                                                                |
|      | (I) $4\text{FeCr}_2\text{O}_4 + 8\text{Na}_2\text{CO}_3 + 702  \frac{fusion}{1100^\circ C} \Rightarrow 8\text{Na}_2\text{CrO}_4 + 2\text{Fe}_2\text{O}_3 + 8\text{CO}_2$ |
|      | (II) $2Na_2CrO_4 + H_2SO_4 \rightarrow Na_2SO_4 + Na_2Cr_2O_7 + H_2O_4$                                                                                                  |

(III) Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + 2C  $\rightarrow$  Cr<sub>2</sub>O<sub>7</sub> + Na<sub>2</sub>CO<sub>3</sub> + CO

(IV)  $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr$ 



| Ans         | $HNO_2 HAR O HAR $ |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sol.        | As $Hot. and conc.$ H <sub>3</sub> AsO <sub>4</sub> Arsenic acid (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | $[H_3AsO_3] \xrightarrow{H_2SO_4} As_4O_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | $H_2SO_4$ Arseneous acid (III).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49.         | The reason is that $HNO_3$ is better oxidising agent than $H_2SO_4$ also acts as dehydrating agent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ans         | . (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>SOI.</b> | Ca Al As S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 1.0 1.5 2.0 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50.<br>Ans  | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sol.        | As positive charge increases the size decreases while with increase in negative charge increase the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | size. This is due to increase in $Z_{eff}$ in former case while decrease in $Z_{eff}$ in later case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 51.         | Hence, order of size is 5- 2 5 2 5- 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ans         | . (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 501.        | isoelectronic ions $\infty^{-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | $z_{eff.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Atomic number 9 8 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | Hence, the order of size will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | O <sup>2-</sup> F <sup>-</sup> Na <sup>+</sup> Mg <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Since, atomic number increases.<br>Therefore, Z <sub>eff</sub> increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -           | Therefore, size decreases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 52.<br>Ans  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sol.        | The retention of ion in exchanges column depends upon the size of ion. Smaller the size of cation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | stronger will be its binding ability. In cation exchanger column the aqueous solution of ion is nassed where binding ability depends upon bydrated radii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | K <sup>+</sup> (aq) Na <sup>+</sup> (aq) Li <sup>+</sup> (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | Since, size of hydrated ion increases<br>Therefore, binding ability deceases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | Ag <sup>+</sup> (aq) show polarization effect, hence, has high binding ability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 53.<br>Ans  | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sol.        | The reaction of $XeF_6$ with $NaNO_3$ takes place as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E1          | $XeF_6 + NaNO_3 \rightarrow XeOF_4 + NaF + F. NO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ans         | . (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sol.        | The crown ether binds metal cation in their cavity. They are selective as they have fixed ring size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | crown-4 Li <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ſ           | Visit On Visit On @Madchemclasses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | www.madchemclasses.online                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

crown-5 Na<sup>+</sup> crown-6 K<sup>+</sup> crown-7 Rb<sup>+</sup> crown-8 Cs<sup>+</sup> Therefore, 12-crown-4 is best suited for Li<sup>+</sup> cation. After then as the size increases binding capacity decreases.

## 55.

#### Ans. (a)

**Sol.** Gas phase proton affinities

 $N^{3-}$  = 308 kJ/mole NF<sub>3</sub> = 604 kJ/mole

 $NH_3 = 872 \text{ kJ/mole}$ 

 $N(CH_3)_3 = 974 \text{ kJ/mole}$ 

(a)

Proton affinity decide the energy release when a molecule/ion accept a proton. Higher the value of gas phase proton affinities more will be basicity. Hence,  $N_3^-$  is most basic.

## 56.

#### Ans.

**Sol.** All the allotropic phosphorous forms changes into white P4 discrete units. Which has structure.

#### 57.

#### Ans.

- **Sol.** The crown ether form complex with metal cation of I-st group. This depend upon
  - (i) size of cavity

(c)

(c)

(ii) complexation ability

K<sup>+</sup> is best filled in crown–6 and 'N' is good donar than O and S therefore the order of hosts will be A > B > C

#### 58.

## Ans.

```
Sol. The average of oxidation states is \frac{+4+3+4}{3} = +\frac{11}{3}
```

$$H_{5}P_{3}P_{10} +5 + 3x - 20 = 0$$
  

$$3x = +15 ∴ x = +5$$
  

$$H_{5}P_{3}O_{7} +5 + 3x - 14 = 0$$
  

$$x = +3$$
  

$$H_{5}P_{3}O_{8} +5 + 3x - 16 = 0$$
  

$$x = +\frac{11}{3}$$
  

$$H_{5}P_{3}O_{9} +5 + 3x - 18 = 0$$
  

$$x = +\frac{13}{2}$$

59.

Ans. (a)

**Sol.** Due to IPE ns<sup>2</sup> electron-pair become inactive. In Pb

@madchemclasses







crypt–222 K<sup>+</sup> Hence, k<sup>+</sup> ion will form most stable complex with cryptand -222.

@madchemclasses

@Madchem Classes Chemistry

**[O**]

# 63.

Ans. (b)

Visit On

w.madchemclasses.online

7880546666











side- product.

$$2F_2 + 2NaOH \rightarrow OF_2 + 2NaF + H_2O$$

Oxidation (Reducing agent)

$$H_2S + 4O_2F_2 \longrightarrow SF_6 + 2HF + 4O_2$$

Reduction (Oxidising agent)



**84.** Ans. (c) Standization using kIO<sub>3</sub>, Sol.  $S_2O_3^{2-} + kIO_3 + kI + HCl \rightarrow I_2 + kCl + H_2O$  $\downarrow$  $\downarrow$  $\downarrow$ (C) (A) **(B)**  $I_2 + Na_2S_2O_8 \rightarrow NaI + Na_2S_4O_6$  $S_2 O_3^{-2}$  $\downarrow$  $S_4 O_6^{2-}$ (C) (D) 85. Ans. (a) & (b)  $XeO_4^{-2}$ ,  $XeO_3$ ,  $XeO_2Fe_2$ Sol.  $Fe_3(CO)_{12} + Na/liq \rightarrow [Fe(CO)_4]^{-2}$  $Mn \rightarrow Can$  stable in +2 (or low o.s) TC higher metal can show or stable in higher Re oxidation state 86. Ans. **(b)**  $H_3PO_4$  is used in the estimation of Fe(II) with  $K_2Cr_2O_7$  using diphenylamine suphonate as indicator Sol. to reduce the electrode potential for the  $Fe^{3+} \rightarrow Fe^{2+}$  reaction by stabilising the ferric ion. 87. Ans. (a)  $\frac{Replaced \frac{1}{4} of Si(IV)}{by Al (III) and Charge balance by K(I)} KAI_2(OH)_2(Si_3Al)O_{10}$  $[Al_2(OH)_2Si_4O_{10}]$ Sol. Pyrophylite Muscovite 88. Ans. (a)  $IO_3^-(aq) + 5I^-(aq) + 6H^+(aq) \rightarrow 3I_2(aq) + 3H_2O(l)$ Sol. 89. Ans. (C) Sol. (+3)(+5)Dithionous acid, H<sub>2</sub>S<sub>2</sub>O<sub>4</sub> Dithionic acid, H<sub>2</sub>S<sub>2</sub>O<sub>6</sub> (-2)(-2)(-2)(-2)0 0 0 (-1)(-1)HO OH (+5)(+5)(-1)(+3) Ο 0 (-2)(-2)90. Ans. **(b)** Poly dimethyl siloxane (PDMS) is : Sol. Me SiMe<sub>3</sub> Me<sub>3</sub>S @Madchem Classes Chemistry Visit On @madchemclasses @madchemclasses 7880546666  $\bigcirc$ www.madchemclasses.online 7380546666

In siloxanes Me<sub>3</sub>SiCl : Used as terminating agents Me<sub>3</sub>SiCl +  $H_2O \rightarrow Me_3Si(OH) + HCl$ Me<sub>2</sub>SiCl<sub>2</sub>: used as chain forming Me<sub>2</sub>SiCl<sub>2</sub> +  $2H_2O \rightarrow Me_2Si(OH)_2 + 2HCl$ MeSiCl<sub>3</sub> : used as cross linkers for branching MeSiCl<sub>3</sub> +  $3H_2O \rightarrow MeSi(OH)_3 + 3HCl$ Me Me Me Me H + HO HC Si -Me Мe 0 OH Me Ĥ OH Me ·Ме Me Branching Me Me Me Me Si Si Si--Me Terminating Me Me 0 **Chain Forming** Me Si ·Ме Me 91. Ans. (a) • Nuclear spin of 10B = 3 Sol. Nuclear spin of 11B = 3/2 $\delta^+$ δδ- $\delta^+$ В ·H C ·H 2.04 2.1 2.5 2.1 This indicates that polarities of B-H and C-H bonds are opposite • Thermal neutron absorption cross section for  ${}^{10}B = 3837$  Barn and for  ${}^{11}B = 0.005$  Barn • Boron resists attack by boiling conc. aqueous NaOH or fused NaOH upto 500°C.  $B + NaOH(aq) \rightarrow No reaction$ Boron react with fused alkali to give sodium metaborate and H<sub>2</sub>. 92. Ans. (c) • LiF is sparingly soluble in water but for large anions such as  $ClO_4^-$ , the Li<sup>+</sup> salts are solublein Sol. water. • Standard reduction potential [E<sup>0</sup>] of Li is more negative than that of Na.  $E_{red}^0 = -3.04$  $E_{red}^0 = -2.71$  $Li^+(aq) + e^- \rightarrow Li(s)$  $Na^{+}(aq) + e^{-} \rightarrow Na(s)$ • Enthalpy of hydration : Li<sup>+</sup>(g)[-520kJ/mol]>Na<sup>+</sup>(g)[-406kJ/mol] 93.

Ans. (a)

HOMO of  $O_2 \rightarrow \pi^*$ Sol.

Visit On

Bonding of  $O_2$  along 2 direction so  $dz^2$ Orbital of Fe





7880546666 7380546666

 $\odot$ 

@madchemclasses

| 94.        |                                                                                                                  |
|------------|------------------------------------------------------------------------------------------------------------------|
| Ans.       | (c)                                                                                                              |
| Sol.       | $[*Co(L)_n]^{2+} + [Co(L)_n]^{3+} \rightarrow [*Co(L)_n]^{3+} + [Co(L)_n]^{2+}$                                  |
|            | $NH_3 = Not a good \pi$ -acceptor n = 6                                                                          |
|            |                                                                                                                  |
|            | O-phen $\langle \rangle$ and $\pi$ accortant $n = 3$                                                             |
|            | good <i>n</i> acceptor n = 5                                                                                     |
|            | bidentate                                                                                                        |
|            | $\pi$ accenter ligands complex and real fact electron transfer by accenting electrons in antihonding             |
|            | <i>n</i> -acceptor liganus complex andergo last electron transfer by accepting electrons in antiboliumg orbitals |
|            | So correct Ans (c) very slow electron transfer $I = NH_2$ n = 6                                                  |
| 95         | 30, correct Ans (c) very slow electron transier $L = 1013, H = 0$                                                |
| Ans.       | (d)                                                                                                              |
| Cal        | (1) $V_{2}$ , $F_{6}$ , $[V_{2} 1]$ , $[D_{2} 1]$                                                                |
| 501.       | (1) $Xe + PtF_6 \longrightarrow [Xe^{+1}] + [PtF_6]$<br>(2) $XeF \rightarrow Me NF \rightarrow [MeN] + [YeF +]$  |
|            | $ (2) \operatorname{XeF}_4 + \operatorname{Me4NF} \to [\operatorname{MeN}]^+ [\operatorname{XeF}_5^+] $          |
|            | In (1) Xe gives 1 electron so it act as a base<br>In (2) XeE, excents a fluoride So act as acid                  |
| 96         | In (2) Act 4 excepts a nuonue 50 act as actu.                                                                    |
| Ans.       | (d)                                                                                                              |
| Sol.       | $nPl_5 + nNH_4Cl \rightarrow [NPCl_2]_n + 4nHCl_2$                                                               |
|            | $[NPCl_2]_3 + 6NaF \rightarrow [NPF_2]_n + 6NaCl$                                                                |
|            | So, (i) and (ii) recur                                                                                           |
|            | Correct (4) (iii) C only (not possible)                                                                          |
| 97.        |                                                                                                                  |
| Ans.       | (a)                                                                                                              |
| Sol.       | Si–F (F is most electronegative so                                                                               |
|            | Si–Cl it pulls the electrons                                                                                     |
|            | Si–Bi and SiF <sub>4</sub> is the most acidic in terms of Lewis acidity                                          |
|            | (a) is correct                                                                                                   |
| 00         | (b) SnCl <sub>2</sub> is So it is a Lewis acid Aluminium silicates do not show Bronsted acidity.                 |
| 98.<br>Anc | (a) (c) (d)                                                                                                      |
| Sol        | (a), (c), (u)<br>B <sub>2</sub> H <sub>2</sub>                                                                   |
| 501.       |                                                                                                                  |
|            | B P point group                                                                                                  |
|            | b point group                                                                                                    |
|            | "AVI ILL'I LASSUS                                                                                                |
|            | 26 planes                                                                                                        |
|            | $E_{12}O, BC_{13} \xrightarrow{NaBH_4} B_2H_6$                                                                   |
|            | Bully anine $\rightarrow$ Symmetrical cleavage                                                                   |
|            | $NMe_3$                                                                                                          |
|            | $B_2\Pi_6 \longrightarrow Me_3N : B\Pi_3$                                                                        |
| 99         |                                                                                                                  |
| Ans        | (h)                                                                                                              |
| Sol        |                                                                                                                  |
| 501.       |                                                                                                                  |

@madchemclasses

Main Group 31



@madchemclasses



