

CSIR NET CHEMICAL SCIENCE

Coordination Chemistry PYQ NET Ass. With Solution

Best Classes For CSIR NET Chemical Science GATE CY | IIT JAM CY Preparation

@Madchem Classes Chemistry

Coordination Chemistry 2

1.	According to crystal filed theory, Ni ²⁺ can have tw	wo unpaired electrons in	[NET JUNE 2011]
	(a) Octahedral geometry only	(b) Square–planar geometry only	
	(c) Tetrahedral geometry only	(d) Both octhahedral and tetrahedral geo	ometry.
2.	The correct order of stability if difluorides is :		[NET JUNE 2011]
	(a) $GeF_2 > SiF_2 > CF_2$	(b) $CF_2 > SiF_2 > GeF_2$	
	(c) $SiF_2 > GeF_2 > CF_2$	(d) $CF_2 > GeF_2 > SiF_2$	
3.	The number of possible isomers for [Ru(bpy) ₂ Cl ₂] is $(bpy = 2,2'-bipyridine)$	[NET JUNE 2011]
	(a) 2 (b) 3	(c) 4 (d) 5	
4.	Cis and trans complexes of the type $[PtA_2X_2]$ are	distinguished by	[NET JUNE 2011]
	(a) Chromyl chloride test	(b) Carbylamine test	
	(c) Kurnakov test	(d) Ring test	
5.	The correct order of LMCT energies is :		[NET JUNE 2011]
	(a) $MnO_4^- < CrO_4^{2-} < VO_4^{3-}$	(b) $MnO_4^- > CrO_4^{2-} > VO_4^{3-}$	
	(c) $MnO_4^- > CrO_4^{2-} < VO_4^{3-}$	(d) $MnO_4^- < CrO_4^{2-} > VO_4^{3-}$	
6.	Consider two redox pairs		[NET JUNE 2011]
	(1) Cr(II)/Ru(III) (2) Cr(II	I)/Co(III)	
	The rate of acceleration in going from a outer-	sphere to a inner-sphere mechanism	is lower for
	(1) relative to		
	(2) Its correct explanation is :		
	(a) HOMO/LUMI are σ^* and σ^* respectively		
	(b) HOMO/LUMO are σ^* and π^* respectively		
	(c) HOMO/LUMO are π^* and σ^* respectively		
	(d) HOMO/LUMO are π^* and π^* respectively.		
7	For the complexes		[NET JUNE 2011]
,.	(A) $[Ni(H_2O)_{\epsilon}]^{2+}$ (B) $[Mn(H_2O)_{\epsilon}]^{2+}$	(C) $[Cr(H_2O)_{\epsilon}]^{3+}$ (D) $[Ti(H_2O)_{\epsilon}]^{3+}$	+
	the ideal octahedral geometry will not be observed	ed in	CFC
	(a) (A) and (B) (b) (C) and (D)	(c) (B) only (d) (D) only	
8.	$Ni(CN_4)^{2-}$ and $Ni(Cl_4)^{2-}$ complex ions are:		[NET JUNE 2011]
	(a) Both diamagnetic.		
	(b) Both paramagnetic		
	(c) Diamagnetic and paramagnetic respectively		
	(d) Antiferromagnetic and diamagnetic respective	ely	
9.	The complex $[Mn(H_2O)_6]^{+2}$ has very light pink co	blour. The best reason for it is	[NET JUNE 2011]
	(a) The complex does not have a charge transfer t	transition.	
	(b) d-d transitions here are orbital for bidden but	spin allowed	
_			
e	Visit On www.madchemclasses.online	@Madchem Classes Chemistry 0 @madch	nemclasses () WhatsApp 7880546666 7380546666

	(c) d-d transitions here are orbital allowed but spin forbidded.				
	(d) d-d transitions here are both orbital forbidden and spin forbidden.				
10.	The possible J values f	For ³ D term symbol a	are		[NET JUNE 2011]
	(a) 2	(b) 3	(c) 4	(d) 5	
11.	The term symbol for the	ne ground state of ni	trogen atoms is		[NET JUNE 2011]
	(a) ${}^{3}P_{0}$	(b) ${}^{4}P_{3/2}$	(c) ${}^{1}P_{1}$	(d) ${}^{4}S_{3/2}$	
12.	The complex that abso	rbs light of shortest	wavelength is		[NET DEC 2011]
	(a) $[CoF_6]^{3-}$	(b) $[Co(H_2O)_6]^{3+}$	(c) $[Co(NH_3)_6]^{3+}$	(d) $[Co(ox)_3]^{3-1}$	$(ox=C_2O_4^{2^-})$
13.	Observe the following	electronic transition	n of a diatomic molecule.		[NET DEC 2011]
	(a) ${}^{1}\Sigma + g \rightarrow {}^{3}\Sigma + g$	(b) ${}^{1}\Sigma + g \rightarrow {}^{3}\Sigma + g$	g (c) ${}^{1}\Sigma + g \rightarrow {}^{3}\Sigma + g$	(d) ${}^{1}\Sigma + g \rightarrow {}^{3}\Sigma$	$\Sigma + g$
	The allowed transition	s are			
	(a) (A) and (c) only	(b) (B) and (D) or	(c) (A), (B) and (C) o	only (d) (A), (C) and (D) only
14.	The electronic spectrum	m of [CrF6] ^{3–} shows	three bands at 14, 900 cm^{-1} ,	, 22400 cm ⁻¹ and 3	$34,800 \text{ cm}^{-1}$. The value of
	$\Delta_{\!o}$ in this case is :				[NET DEC 2011]
	(a) 5, 500 cm^{-1}	(b) 14, 900 cm^{-1}	(c) 22, 400 cm^{-1}	(d) 34, 800 cm	-1 L
15.	The actual magnetic m	oment shows a large	e deviation from the spin-on	ly formula in the	case of [NET DEC 2011]
	(a) Ti^{3+}	(b) V ³⁺	(c) Gd ³⁺	(d) Sm^{3+}	
16.	Green coloured Ni (PF	Ph2Et)2 Br2 <mark>, has</mark> a ma	agnetic moment of 3.20 B.N	<mark>1</mark> . The geometry a	and the number of isomers
	possible for the comple	ex respecti <mark>vely,</mark> are			[NET DEC 2011]
	(a) square planar and c	me	(b) tatrahedral and on	e	
	(c) Square planer and t	wo	(d) tetrahedral and tw	'O	
17.	The correct order of ac	eidity among the foll	lowing species is		[NET DEC 2011]
	(a) $[Na(H_2O)_6]^+ > [Ni($	$({\rm H}_{2}{\rm O})_{6}]^{2+} > [{\rm Mn}({\rm H}_{2}{\rm O})_{6}]^{2+}$	$D_{6}]^{2+} > [Sc(H_{2}O)_{6}]^{3+}$		
	(b) $[Sc(H_2O)_6]^{3+} > [Nick Content on C$	$(H_2O)_6]^{2+} > [Mn(H_2O)_6]^{2+}$	$O_{6}]^{2+} > [Na(H_2O)_6]^+$		
	(c) $[Mn(H_2O)_6]^{2+} > [N_1]^{2+}$	$i(H_2O)_6]^{2+} > [Sc(H_2O)_6]^{2+}$	$O_{6}]^{3+} > [Na(H_2O)_6]^+$		
	(d) $[Sc(H_2O)_6]^{3+} > [Na]^{3+}$	$(H_2O)_6]^+ > [Ni(H_2O)_6]^+$	$[M_6]^{2+} > [Mn(H_2O)_6]^{2+}$		
18.	A true statement about	base hydrolysis of	[Co(NH ₃) ₅ Cl] ²⁺ is :		[NET DEC 2011]
	(a) It is a first order rea	action			
	(b) The rate determining	ng step involves the	dissociation of chloride in [$Co(NH_3)_4(NH_2) C$	1]+.
	(c) The rate is indepen	dent of the concentr	ation of the base		
	(d) The rate determining	ng step involves the	abstraction of a proton from	$[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{Cl}]^2.$	
19.	The correct order of d-	orbital splitting in a	trigonal bipyramidal geome	etry is :	[NET DEC 2011]
	(a) $d_{z^2} > d_{xz} > d_{x^2-y}$	v^2, d_{xy} (t	b) d_{xz} , $d_{yz} > d_{x^2-y^2}$, $d_{xy} > a_{xy}$	l_{z^2}	
	(c) $d_{x^2 - y^2} d_{xy} > d_{z^2}$	$> d_{xz}, d_{yz}$ (c	d) $d_{z^2} > d_{x^2 - y^2} > d_{xy} > d_{xy}$, d _{yz}	
20.	For the following outer	r sphere electron tra	nsfer reactions.		[NET DEC 2011]
	-				

Wisit On Www.madchemclasses.online f @madchemclasses @Madchem Classes Chemistry @@madchemclasses @ 7880546666

		•
	$[\operatorname{Co}(\mathrm{NH}_3)_6]^{2+} + [\operatorname{Co}^*(\mathrm{NH}_3)_6]^{3+} \rightarrow [\operatorname{Co}(\mathrm{NH}_3)_6]^{3+} + [\operatorname{Co}^*(\mathrm{NH}_3)_6]^{2+}$	
	$[Ru(NH_3)_6]^{2+} + [Ru^*(NH_3)_6]^{3+} \rightarrow [Ru(NH_3)_6]^{3+} + [Ru^*(NH_3)_6]^{2+}$	
	the rate constants are 10^{-6} M ⁻¹ s ⁻¹ and 8.2×10^2 M ⁻¹ s ⁻¹ respectively. This different	ce in the rate constants is due to
	(a) A change from high spin to low spin in Co* and high spin to low spin in Ru.	
	(b) A change from high spin to low spin in Co* and low spin to high spin Ru*	
	(c) A change from low spin to high spin in Co* and the low spin state remains un	changed in Ru.
	(d) A change from low spin to high spin in Co* and high spin to low spin in Ru*	
21.	As a ligand Cl [−] is :	[NET JUNE 2012]
	(a) Only a σ – donor (b) Only a π – donor	
	(c) Both a σ -donor and a π -donor (d) A σ -donor and a σ -acceptor	
22.	The number of microstates for d ⁵ electron configuration is :	[NET JUNE 2012]
	(a) 21×6^3 (b) 14×6^3 (c) 7×6^2 (d) $28 \times$	6 ³
23.	The correct d-electron configuration showing spin-orbit coupling is	[NET JUNE 2012]
	(a) $t_{2g}^4 e_g^2$ (b) $t_{2g}^6 e_g^0$ (c) $t_{2g}^4 e_g^0$ (d) $t_{2g}^3 e_g^0$	$\frac{2}{g}$
24.	The number of spin-allowed ligand field transitions for octahedral Ni(II) complex	es with ${}^{3}A_{2g}$, ground state is :
		[NET JUNE 2012]
	(a) Two (b) Three (c) One (d) Four	
25.	The light pink color of $[Co(H_2O)_6]^{+2}$ and the deep blue color of $[Co(Cl_4]^{-2}$ are due	to [NET DEC 2012]
	(a) MLCT transition in the first and d-d transition in the second	
	(b) LMCT transition in both	
	(c) d-d transitions in both.	
	(d) d-d transition in the first and MLCT transition in the secon.	
26.	The total number of Cu–O bonds present in the crystalline copper (II) acetate mor	ohydrate is: [NET DEC 2012]
	(a) 10 (b) 6 (c) 8 (d) 4	
27.	The electric dipole allowed transition in a d2 atomic system is	[NET DEC 2012]
	(a) ${}^{3}F \rightarrow {}^{1}D$ (b) ${}^{3}F \rightarrow {}^{1}P$ (c) ${}^{3}F \rightarrow {}^{3}D$ (d) ${}^{3}F \rightarrow {}^{3}P$	
28.	Coordination number of "C" in Be_2C_3 whose structure is correlated with that of C	aF ₂ is : [NET DEC 2012]
	(a) 2 (b) 4 (c) 6 (d) 8	
29.	One of the excited states of Ti has the electric configuration [Ar] $4s_2 3d_1 4p_1$. The	number of microstates with zero
	total spin (s) for this configuration is	[NET DEC 2012]
	(a) 9 (b) 15 (c) 27 (d) 60	
30.	The number of possible isomers of $[Ru(PPh3)2(acac)2]$ (acac = acetylacetonate)	is: [NET DEC 2012]
	(a) 2 (b)3 (c) 4 (d) 5	
31.	The correct spinel structure of Co ₃ O ₄ is :	[NET DEC 2012]
	(a) $(Co^{2+})_t (2Co^{3+})oO_4$ (b) $(Co^{2+})_t (2CO^{3+}Co^{3+})_o$	O ₄
G		@madehamelasses
e	www.madchemclasses.online	WhatsApp 7380546666

	(c) $(Co^{2+}Co^{3+})_t (Co^{3+})_0O_4$	(d) $(2Co^{3+})_t(Co^{2+})oO_4$	
32.	In the solid state, the $CuCl_5^{3-}$ ion has two types of bond	s. These are	[NET DEC 2012]
	(a) Three long and two short	(b) Two long and three short	
	(c) One lone and four short	(d) Four long and one short	
33.	The platinum complex of NH_3 and $Cl^{\scriptscriptstyle -}$ ligands is an	anti-tumour agent. The correct	isomeric formula of the
	complex and its precursor are		[NET DEC 2012]
	(a) cis-Pt(NH ₃) ₂ Cl ₂ and PtC l_4^{2-}	(b) trans–Pt(NH ₃) ₂ Cl ₂ and PtCl	2-4
	(c) $\operatorname{cis} - \operatorname{Pt}(NH_3)_2\operatorname{Cl}_2$ and $\operatorname{Pt}(NH3)_4^{2+}$	(d) trans-pt (NH ₃) ₂ Cl ₂ and Pt(N	$(H_3)_4^{2-}$
34.	Succesive addition of NaCl, H ₃ PO ₄ , KSCN and NaF to a	a solution of Fe(NO ₃) ₃ .9H ₂ O giv	es yellow,
	colourless, red and again colorless solutions due to t	he respective formation of :	[NET DEC 2012]
	(a) [Fe(H ₂ O) ₅ Cl] ²⁺ , [Fe(H ₂ O) ₅ (PO) ₄)], [Fe(H ₂ O) ₅ (SCN)] ²⁺ , [Fe(H ₂ O) ₅ F] ²⁺	
	(b) [Fe(H ₂ O) ₄ Cl(OH)] ⁺ , [Fe(H ₂ O) ₅ (PO) ₄)], [Fe(H ₂ O) ₅ (S	SCN)] ²⁺ , [Fe(H ₂ O) ₅ F] ²⁺	
	(c) [Fe(H ₂ O) ₅ Cl] ²⁺ , [Fe(H ₂ O) ₆] ³⁺ , [Fe(H ₂ O) ₅ (SNC)] ²⁺ , [I	Fe(H ₂ O) ₅] ²⁺	
	(d) [Fe(H ₂ O) ₅ Cl] ²⁺ , [F <mark>e(H</mark> ₂ O) ₅ (PO) ₄)], [Fe(H ₂ O) ₅ (SCN)] ²⁺ , [Fe(H ₂ O) ₄ (SCN)F] ⁺	
35.	The rate of exchange of OH ₂ present in the coordinat	ion sphere by ¹⁸ OH ₂ of , (i) [Cu	(OH) ₂] ₆] ²⁺ , (ii)
	[Mn(OH ₂) ₆] ²⁺ , (iii) F <mark>e(</mark> OH ₂) ₆] ²⁺ , (iv) [Ni(OH ₂) ₆] ²⁺ , follo	ws an order.	[NET DEC 2012]
	(a) (i) > (ii) > (iii) > (iv)	(b) (i) > (iv) > (iii) > (ii)	
	(c) (ii) > (iii) > (iv) > (i)	<mark>(d) (iii) > (</mark> i) <mark>> (i</mark> v) > (ii)	
36.	For an electronic configuration of two non-equivalent π	electronics $[\pi_1, \pi_1]$ which of the	following terms is not
	possible ?		[NET JUNE 2013]
	(a) 1Σ (b) 3Σ (c) 3Δ	(d) 3ø	
37.	The reaction of $[PtCl_4]^{2-}$ with two equivalents of NH_3 pr	roduces	[NET JUNE 2013]
	(a) cis-[Pt(NH ₃) ₂ Cl ₂]		
	(b) trans– $[Pt(NH_3)_2Cl_2]$		
	(c) boths cis $-$ [Pt(NH ₃) ₂ Cl ₂] and trans $-$ [Pt(NH ₃) ₂ Cl ₂]		
	(d) cis- $[Pt(NH_3)Cl_4]^{2-}$		
38.	The electronic transition responsible for the color of	f the transition metal ions is	[NET JUNE 2013]
	(a) $d_{\pi} \rightarrow d_{\sigma}$ (b) $d_{\pi} \rightarrow d_{\sigma^*}$ (c) d_{π}	$\rightarrow d_{\pi^*} \qquad (d) \ d_{\sigma} \rightarrow d_{\pi^*}$	
39.	The Mulliken symbols for the spectroscopic states ar	ising from the free-ion term F	are [NET JUNE 2013]
	(a) $T_{2g} + E_g$ (b) $T_{1g} + T_{2g} + T_{1u}$ (c) T_{1g}	$+ T_{2g} + A_{2g}$ (d) $A_{1g} + T_{2g} +$	T_{1g}
40	The orders of reactivity of ligands, NMe ₃ , PMe ₃ and CC) with complexes MeTiCl ₃ and (CO) ₅ Mo(thf) are
			[NET JUNE 2013]
	(a) $CO > PMe_3 > NMe_3$ and $CO > NMe_3 > PMe_3$	(b) $PMe_3 > CO > NMe_3$ and NI	$Me_3 > CO > PMe_3$
	(c) $NMe_3 > PMe_3 > CO$ and $CO > PMe_3 > NMe_3$	(d) $NMe_3 > CO > PMe_3$ and PMe_3	$Me_3 > NMe_3 > CO$

Silica gel contains [CoCl₄]²⁻ as an indicator. When activated, silica gel becomes dark blue while upon absorption 41. [NET JUNE 2013] of moisture, its colour changes to pale pink. This is because, (a) Co(II) changes its coordination from tetrahedral to octahedral. (b) Co(II) changes its oxidation state to Co(III) (c) Tetrahedral crystal field splitting is NOT equal to octahedral crystal field splitting. (d) Co(II) forms kinetically labile while Co(III) forms kinetically inert complexes. Intense band at 15000 cm⁻¹ in the UV-visible spectrum of [Bu₄N]₂Re₂Cl₈ is due to the transition 42. **[NET JUNE 2013]** (c) $\delta - \pi^*$ (a) $\pi - \pi^*$ (b) $\delta - \delta^*$ (d) $\pi - \delta^*$ Identify the order representing increasing π -acidity of the following ligands C₂F₄, NEt, CO and C₂H₄ 43. **[NET JUNE 2013]** (a) $CO < C_2F_4 < C_2H_4 < NEt_3$ (b) $C_2F_4 < C_2H_4 < NEt_3 < CO$ (c) $C_2H_4 < NEt_3 < CO < C_2F_4$ (d) NEt₃ < C₂H₄ < C₂F₄ < CO 44. Three bands in the electronic spectrum of $[Cr(NH_3)_6]^{3+}$ are due to the following transitions **[NET JUNE 2013]** (B) ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$ (c) ${}^{4}A_{2g} \rightarrow {}^{2}E_{g}$ (A) ${}^{4}A_{2g} \rightarrow {}^{4}T_{1g}$ Identify the correct statement about them (a) Intensity of (A) is lowest (b) Intensity of (C) is lowest (c) Intensitites of (A), (B) and (C) similar (d) Intensities (B) and (C) are similar The Δt of the following complexes 45. **[NET JUNE 2013]** (C) $[Co(NCS)_4]^2$ - follows the order (A) [CoCl₄]²⁻ (B) $[CoBr_4]^{2-}$ (a) C > A > B(b) A > B > C(c) B > A > C(d) C > B > A46. The raeaction of FeCl₃.6H₂O with SOCl₂ yields. [NET DEC 2013] (b) $FeCl_3(s)$, $SO_2(g)$ and HCl(l)(a) $FeCl_2(s)$, $SO_2(g)$ and HCl(g)(c) $FeCl_2(s)$, $SO_3(s)$ and HCl(g)(d) $FeCl_3(s)$, $SO_2(g)$ and HCl(g)Among the following the correct acid strength trend is represented by [NET DEC 2013] 47. (a) $[A](H_2O)_6]^{3+} < [Fe(H_2O)_6]^{3+} < [Fe(H_2O)_6]^{2+}$ (b) $[Fe(H_2O)_6]^{3+} < [Al(H_2O)_6]^{3+} < [Fe(H_2O)_6]^{2+}$ (c) $[Fe(H_2O)_6]^{2+} < [Fe(H_2O)_6]^{3+} < [Al(H_2O)]^{3+}$ (d) $[Fe(H_2O)_6]^{2+} < [Al(H_2O)_6]^{3+} < [Fe(H_2O)_6]^{3+}$ An octahedral metal ion M²⁺ has magnetic moment of 4.0 B.M. The correct combination of metal ion and d-48. electron configuration is given by [NET DEC 2013] (b) $\operatorname{Cr}^{2+}, t_{2a}^4 e_a^2$ (c) $\operatorname{Mn}^{2+}, t_{2a}^3 e_a^1$ (d) $\operatorname{Fe}^{2+}, t_{2a}^4 e_a^2$ (a) $\operatorname{Co}^{2+}, t_{2a}^5 e_a^2$ 49. Oxidised form of enzyme catalase (Structure A); prepared by the reaction of $[Fe(P)]^+$ (P = porphyrin) with H₂O₂, has green color because [NET DEC 2013] @Madchem Classes Chemistry Visit On @madchemclasses @madchemclasses 7880546666 \bigcirc www.madchemclasses.online 7380546666

A(substitutents on ring are removed for clarity)

- (a) Oxidation state of iron changed from Fe^{III} to Fe^{IV} .
- (b) Porphyrin ring is oxidized by one electron
- (c) $\pi \pi^*$ transition appears in the visible region
- (d) Fe^{IV} is coordinated with anionic tyrosinate ligand in axial position.
- 50. $MnCr_2O_4$ is likely to have a normal spinel structure because

ure because [NET DEC 2013]

(a) Mn²⁺ will have a LFSE in the octahedral site whereas the Cr³⁺ will not

(b) Mn is +2 oxidation state and both the Cr are in +3 oxidation state.

(c) Mn is +3 oxidation state and 1 Cr is in +2 and the other is in +3 state.

- (d) Cr^{3+} will have a LFSE in the octahedral site whereas the Mn^{2+} ion will not.
- 51. Compounds $K_2Ba[Cu(NO_2)_6]$ (A) and $Cs_2Ba[Cu(NO_2)_6(B)$ exhibit tetragonal elongation and tetragonal compression, respectively. The unpaired electron in A and B are found respectively, in orbitals,

[NET DEC 2013] (d) $d_{x^2-y^2}$ and $d_{x^2-y^2}$ [NET DEC 2013]

(a)
$$d_{z^2}$$
 and $d_{x^2-y^2}$ (b) $d_{x^2-y^2}$ and d_{z^2} (c) d_{z^2} and d_{z^2}

52. The most appropriate structure for the complex $[Pt_2(NH_3)_2(NCS)_2(PPh_3)_2]$ is

53. In bis (dimethylglyoximato) nickel(II), the number of Ni-N, Ni–O and intramolecular hydrogen bond(s) respectively are [NET JUNE 2014]

- (a) 4, 0 and 2 (b) 2, 2 and 2 (c) 2, 2 and 0 (d) 4, 0 and 1
- 54. If L is a neutral mono-dentate ligand, the species, $[AgL_4]^{2+}$, $[AgL_6]^{2+}$ and $[AgL_4]^{3+}$ respectively are

```
[NET JUNE 2014]
```

(a) Paramagnetic, paramagnetic and diamagnetic

	(b) Paramagnetic,	diamagnetic and pa	ramagnetic			
	(c) Diamagnetic, p	aramagnetic and di	amagnetic			
	(d) Paramagnetic,	diamagnetic and dia	amagnetic			
55.	The term symbol the	hat is NOT allowed	for the np2 con	figuration is		[NET JUNE 2014]
	(a) 1D	(b) 3P	(c) 1	S	(d) 3D	
56.	A1:2 mixture of M	e2NCH2CH2PPh2 a	nd KSCN with I	K ₂ [PdCl ₄] gives a	square planar o	complex A. Identify the
	correct pairs of do	nor atoms trans to e	ach other in con	plex A from the	following com	binations.
						[NET JUNE 2014]
	(a) P,N	(b) N, S	(c) P	, S	(d) N, N	
57.	NiBr ₂ reacts with	(Et) (Ph ₂) P at -	-78°C in CS ₂ to	give red comp	oound 'A', whi	ich upon standing at room
	temperature turns	temperature turns green to give compound, 'B' of the same formula. The measured magnetic moments of 'A' and				
	'B' are 0.0 and 3.2	BM, respectively.	The geometries	of 'A' and 'B' ar	e	[NET JUNE 2014]
	(a) square planar a	nd tetrahedral		(b) tetrahedra	l and square pla	nar
	(c) square planar a	nd octahedral		(d) tetrahedra	l and octahedra	1
58.	$[CoL_6]^{3+}$ is red in a	colour whereas [Co	oL' ₆] ³⁺ is green.	L and L' respect	ively correspo	nds to: [NET JUNE 2014]
	(a) NH_3 and H_2O			(b) NH ₃ and	1, 10-phenant	hroline
	(c) NH_3 and 1, 10-	phenanthroline		(d) H ₂ O and	NH ₃	
59.	The maximum bo	nd order obtained	fr <mark>om the m</mark> ole	cula <mark>r orbitals</mark> of	a transition me	etal dimer, formed as
	linear combinatio	n of d-orbital <mark>s</mark> alo	ne, is			[NET JUNE 2014]
	(a) 3	(b) 4	(c) 5		(d) 6	
60.	Reaction of [Ru(N	H ₃)5(isonicotinami	de)] ³⁺ . with [Cr($H_2O_6]^{2+}$. occurs	by inner sphere	e mechanism and rate of the
	reaction is determi	ned by dissociation	of the successor	complex. It is d	ue to the	[NET JUNE 2014]
	(a) Inert ruthenium	bridged to inert ch	romium centre			
	(b) Inert ruthenium	n bridged to labile c	hromium centre			
	(c) Labile rutheniu	m bridged to inert of	chromium centre	. /		
	(d) Labile rutheniu	m bridged to labile	chromium centi	e		
61.	Consider the seco	nd order rate con	stants for the fo	llowing outer-s	phere electron	transfer reactions :
						[NET JUNE 2014]
	[Fe(H ₂ O) ₆] ³⁺ /[Fe(H ₂ O) ₆] ²⁺ 4.0 M ⁻¹ se	ec ^{−1}			
	$[Fe(phen)_3]^{3+}/[Fe(phen)_3]^{3+}$	$(phen)_3]^{2+} 3.0 \times 1$	07 M-1			
	(phen = 1, 10-phe	nanthroline)				
	The enhanced rat	e constant for the	second reaction	n is due to the fa	ct that	
	(a) The 'phen' is a	π-acceptro ligand	that allows mi	xing of electron	donor and acce	eptor orbitals that
	enhances the rate	of electron transf	er			
	(b) The 'Phen' is a	π -donor ligand t	nat enhances th	e rate of electro	n transfer	
	Visit On	@madeb4	emclasses	Madchem Classes Ch	emistry 🦰 @ma	dchemclasses 7880546666
Ŕ	www.madchemclasse	es.online				WhatsApp 7380546666

Coordination Chemistry

Coordination Chemistry 9

(c) The 'phen' forms charge transfer complex with iron and facilitates the electron transfer (d) The 'phen' forms kinetically labile complex with iron and facilitates the electron transfer. In its electronic spectrum, $[V(H_2O)_6]^{3+}$ exihibits two absorption bands, one at 17, 800 (v₁) and the second at 25, 62. 700 (v_2) cm⁻¹. The correct assignment of these bands, respectively, is [NET JUNE 2014] (a) $v_1 = {}^{3}T_{1g}(F) \rightarrow {}^{3}T_{2g}(F), v_2 = {}^{3}T_{1g}(F) \rightarrow {}^{3}T_{1g}(P)$ (b) $v_1 = {}^{3}T_{1g}(F) \rightarrow {}^{3}T_{1g}(F), v_2 = {}^{3}T_{1g}(F) \rightarrow {}^{3}T_{2g}(P)$ (c) $v_1 = {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ (F), $v_2 = {}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ (F) (d) $v_1 = {}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ (F), $v_2 = {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ (F) identify the correct statement about $[Ni(H_2O_6)]^{2+}$ and $[CuCH_2O_6]^{2+}$ 63. **[NET JUNE 2014]** (a) All Ni-O and Cu-O bond lengths of individual species are equal. (b) Ni-O (equatorial) and Cu-O(equatorial) bond lengths are shorter than Ni-O(axial) and Cu-O(axial) ones respectively. (c) All Ni-O bond lengths are equal whereas Cu-O(equatorial) bonds are shorter than Cu-O(axial)bonds: (d) All Cu-O bond lengths are equal whereas Ni-O(equatorial) bonds are shorter than Ni-O(axial)bonds. In the following reaction $[PtCl_4]^{2-} + NO_2^- \rightarrow A \xrightarrow{NH_3} B$, compound B is 64. [NET DEC 2014] (a) trans-[PtCl₂(NO_2)(NH_3)]-(b) cis-[PtCl₂(NO₂)(NH₃)]-(c) trans- $[PtCl_2(NH_3)_2]$ (d) cis- $[PtCl_2(NO_2)_2]^2$ -The number of stereoisomers of trans-[CoCl₂(triethylenetetraamine)] Br is 65. [NET DEC 2014] (a) One (d) Four (b) Two (c) Three 66. An aqueous solution of $[Mn(H_2O)_6]^{2+}$ complex is pale pink in colour. The probable reasons for it are [NET DEC 2014] (A) presence of ${}^{6}A_{1g}$ ground state (B) Disallowed transition by spin selection rule (C) Presence of ${}^{2}T_{2g}$ ground state (D) Charge transfer transition The correct answer is (b) A and C (c) B and C (d) C and D (a) A and B Base hydrolysis of $[CoCl(NH_3)_5]^{2+}$ is an second order reaction, whereas that of $[Co(CN)_6]^{3-}$ is of first order. 67. The rates depend in both cases solely on the concentrations of the cobalt complex. This may be due to [NET DEC 2014] (A) Presence of ionizable proton in $[CoCl(NH_3)_5]^{2+}$ but not in $[Co(CN)_6]^{3-}$ (B) $S_N^{1}_{CB}$ mechanism in the case of $[CoCl(NH_3)_5]^{2+}$ only (C) $S_N^{1}_{CB}$ mechanism in the case of $[Co(CN)_6]^{3-}$ only (D) $S_{N^{1}CB}$ mechanism in both the complexes Correct explanation (s) is/are (a) A and B (b) A and C (c) B only (d) A and D

@Madchem Classes Chemistry

@madchemclasses

Visit On

w.madchemclasses.online

 \bigcirc

@madchemclasses

68.	The spin–only magnetic moment and the spectroscopic ground state term symbol of manganese center in				
	$[MnF_6]^{3-}$ ion respectively, are				[NET DEC 2014]
	(a) 4.9 BM and ⁵ D	(b) 4.9 BM and ${}^{4}F$	(c) 3.9 BM and ³ D	(d) 4.9	9 BM and ³ F
69.	The spin–only (μ_s) a	and spin plus orbital (μ_{s+1}) magnetic moments of	[CrCl ₆] ³⁻ are	
					[NET DEC 2014]
	(a) 3.87 BM and 5.20) BM	(b) 2.84 BM and 5.20	BM	
	(c) 3.87 BM and 6.34	BM	(d) 2.84 BM and 6.34	BM	
70.	The S and L values for	or ¹⁵ N atom respectively, a	re		[NET DEC 2014]
	(a) 1/2 and 1	(b) 1/2 and 0	(c) 1 and 0	(d) 3/2 and 0	
71.	The configuration [No	e] 2p ¹ 3p ¹ has a ³ D term. Its	s levels are		[NET DEC 2014]
	(a) ${}^{3}D_{3/2}$, ${}^{3}D_{1/2}$	(b) ${}^{3}D_{5/2}$, ${}^{3}D_{3/2}$, ${}^{3}D_{1/2}$	(c) ${}^{3}D_{3}$, ${}^{3}D_{2}$, ${}^{3}D_{1}$ (d) ${}^{3}D_{3}$	$^{3}D_{2}, ^{3}D_{1}, ^{3}D_{0}$	
72.	The three dimensiona	l structure of compound [(Co(Co(NH ₃) ₄ (OH) ₂) ₃] Br	6, has	[NET DEC 2014]
	(a) Twelve Co-O and	twelve Co-B bonds	(b) Ten Co-O and ten C	Co-N bonds	
	(c) Fourteen Co-O and	d ten Co-N bonds	(d) Twelve Co-O and to	en Co-N bonds	
73.	The electric-dipole al	lowed transition among th	e following is		[NET JUNE 2015]
	(a) ${}^{3}S \rightarrow {}^{3}D$	(b) ${}^{3}S \rightarrow {}^{3}P$	(c) ${}^{3}S \rightarrow {}^{1}D$	(d) ${}^{3}S \rightarrow {}^{1}F$	
74.	The lowest energy-sta	ate of an ato <mark>m</mark> with electro	nic configuration ns ¹ np ¹	has the term syr	nbol
					[NET JUNE 2015]
	(a) ${}^{3}P_{1}$	(b) ${}^{1}P_{1}$	(c) ${}^{3}P_{2}$	(d) ${}^{3}P_{0}$	
75.	Match the complexes	given in column I with the	e electronic transitions (r	nainly responsib	le for their colours) listed
	in column II				[NET JUNE 2015]
	Column –I		Column –II		
	(I) Fe(II)-protoporphy	vrin IX	(A) $\pi \rightarrow \pi^*$		
	(II) [Mn(H ₂ O) ₆]Cl ₂		(B) spin allowed d-d		
	(III) [Co(H ₂ O) ₆]Cl ₂		(C) spin forbidden $d \rightarrow d$	d	
			(D) $M \rightarrow L$ charge tran	sfer	
	The correct answer is	:			
	(a) I–A, II–C and III–	В	(b) I–D, II–B and III–C	2	
	(c) I–A, II–C and III–	D	(d) I–A, II–B and III–C	2	
76.	Among the complexe	s,			[NET JUNE 2015]
	(A) $K_4[Cr(CN)_6]$,	(B) K ₄ [Fe(CN) ₆],	(C) K ₃ [Co(CN) ₆],	(D) K ₄ [Mn(CN	I) ₆]
	Jahn–Teller distortion	is expected in			
	(a) A, B and C	(b) B, C and D	(c) A and D	(d) B and C	
77.	Hence, complex will	show Jahn-Teller Distortio	on.		[NET DEC 2015]

78.	(a) ³ S ₁ Chelate effect is	(b) ${}^{3}S_{0}$	(c) ${}^{1}S_{0}$	(d) ${}^{2}S_{1/2}$	[NET DEC 2015]
	(a) predominantly due	to enthalpy change			
	(b) predominantly due	to entropy change			
	(c) Independent of ring	size			
	(d) due to equal contrib	oution of entropy and ent	halpy change		
79.	Possible term symbol(s	s) of the excited states of	Na atom with the electro	onic configuratio	$n [1s^2 2s^2 2p^6 3p^1]$ is/are
					[NET DEC 2015]
	(a) ${}^{2}S_{1/2}$	(b) ${}^{2}P_{3/2}$ and ${}^{2}P_{1/2}$	(c) ${}^{1}S_{0}$ and ${}^{1}P_{1}$	(d) ${}^{3}P_{0}$ and ${}^{3}P_{1}$	
80.	The symmetry-allowed	l atomic transition among	g the following is		[NET DEC 2015]
	(a) ${}^{3}F \rightarrow {}^{1}D$	(b) ${}^{3}F \rightarrow {}^{3}D$	(c) ${}^{3}F \rightarrow {}^{1}P$	(d) ${}^{3}F \rightarrow {}^{3}P$	
81.	The term symbol for th	e first excited state of Be	e with the electronic cont	figuration 1s ² 2s	¹ 3s ¹ is.
					[NET DEC 2015]
	(a) ${}^{3}S_{1}$	(b) ${}^{3}S_{0}$	(c) ${}^{1}S_{0}$	(d) ${}^{2}S_{1/2}$	
82.	Chelate effect is				[NET DEC 2015]
	(a) predominantly due	to enthalpy change			
	(b) predominantly due	to entropy change			
	(c) Independent of ring	; size			
	(d) due to equal contrib	oution of e <mark>ntrop</mark> y and ent	halpy change		
83.	Possible term symbol(s	s) of the ex <mark>c</mark> ited states of	Na atom with the electro	onic configuratio	on $[1s^2 2s^2 2p^6 3p^1]$ is/are
					[NET DEC 2015]
	(a) ${}^{2}S_{1/2}$ (b) ${}^{2}P_{3}$	$_{/2}$ and $^{2}P_{1/2}$	(c) ${}^{1}S_{0}$ and ${}^{1}P_{1}$	(d) ${}^{3}P_{0}$ and ${}^{3}P_{1}$	
84.	The symmetry-allowed	l atomic transition among	g the following is		[NET DEC 2015]
	(a) ${}^{3}F \rightarrow {}^{1}D$	(b) ${}^{3}F \rightarrow {}^{3}D$	(c) ${}^{3}F \rightarrow {}^{1}P$	(d) ${}^{3}F \rightarrow {}^{3}P$	
85.	The oxidizing, power of	of [CrO ₄] ^{2–} , [MnO ₄] ^{2–} , ar	nd $[FeO_4]^{2-}$ follows the o	rder	[NET DEC 2015]
	(a) $[CrO_4]^{2-} < [MnO_4]^2$	$^{-} < [FeO_4]^{2-}$	(b) $[FeO_4]^{2-} < [MnO_4]^2$	$2^{2-} < [CrO_4]^{2-}$	
	(c) $[MnO_4]^{2-} < [FeO_4]^2$	$^{-} < [CrO_4]^{2-}$	(d) $[CrO_4]^{2-} < [FeO_4]^{2-}$	$(MnO_4)^{2-}$	
86.	Using crystal field theo	ory, identify from the foll	lowing complex ions that	t shows same μ_{ef}	f (spin only) values
					[NET DEC 2015]
	(A) $[CoF_6]^{3-}$	(B) $[IrCl_6]^{3-}$	(C) $[Fe(H_2O)_6]^{2+}$		
	(a) A and B	(b) B and C	(c) A and C (d) A,	B and C	
87.	The correct statemen	t for Mn–O bond length	s in $[Mn(H_2O)_6]^{2+}$ is		[NET DEC 2015]
	(a) All bonds are equa	al	(b) Four bonds are lo	nger than two o	thers
	(c) Two bonds are lon	iger than four others (d) they are shorter than	then Mn-0 bon	id in [MnO ₄]-
88.	Spin motion of which	of the following gives n	nagnetic moment		[NET DEC 2015]
_					
	Visit On www.madchemclasses.onli	ne f @madchemclasses	@Madchem Classes Che	mistry 0 @madcl	hemclasses 5 7880546666 WhatsApp 7380546666

Coordination Chemistry

	(A) electron, Correct answer is	(B) proton	(C) neutron		
	(a) A and B	(b) B and C	(c) A and C	(d) A, B and C	
89.	[MnO ₄]- is deep purp	ole in color whereas [H	ReO ₄]- is colorless. The i	s due to greater e	nergy required for
					[NET DEC 2015]
	(a) d–d transitions in	n the Re compound co	mpared to the Mn comp	oound	
	(b) d–d transitions in	n the Mn compound co	ompared to the Re comp	oound	
	(c) Charge transfer f	rom O to Re compared	l to O to Mn		
	(d) Charge transfer f	rom O to Mn compare	d to O to Re		
90.	The correct stateme	nt about the substitut	ion reaction of [Co(CN ₅ (Cl] ³⁻ with OH- to g	ive [NET DEC 2015]
	[Co(CN)5(OH)] ³⁻ is ,				
	(a) it obeys first ord	er kinetics			
	(b) Its rate is propor	tional to the concentr	ation of both the reaction	ons	
	(c) It follows the S_{N^1}	CB mechanism			
	(d) Its rate is depend	lent only on the conce	ntration of [OH]-		
91.	Aqueous Cr ²⁺ effects	one electron redudct	tion of [Co(NH ₃) ₅ Cl] ²⁺ gi	ving compound Y.	Compound Y
	undergoes rapid hyd	lrolysis . Y is,			[NET DEC 2015]
	(a) [Co(NH ₃) ₅] ²⁺		(<mark>b) [Co(N</mark> Ha	<mark>₃)₅(OH)]+</mark>	
	(c) [Co(NH ₃) ₄ (OH) ₂]		(d) [Cr(H₂O	<mark>)₅Cl]</mark> ²+	
92.	Choose the correct sta	atements about Tanabe-	Sugano diagrams		[NET DEC 2015]
	(A) E/B is plotted aga	inst Δ0/B			
	(B) The zero energy is	s taken as that of the lo	west term		
	(C) Terms of the same	e symmetry cross each	other		
	(D) Two terms of the	same symmetry upon i	ncreases of ligand field st	trength bend apart	from
	Correct answer is				
	(a) A and B	(b) A and C	(c) A, B and D	(d) A, B, C an	d D
93.	Three electronic tra	nsitions at 14900, 22	700 and 34400 cm ⁻¹ ar	e observed in the	absorption spectrum of
	$[CrF_6]^{3-}$. The Δ_0 value	e (in cm ⁻¹) and the cor	responding transition a	are	[NET DEC 2015]
	(a) 7800 and ${}^{4}A_{2g} \rightarrow$	⁴ T _{2g}	(b) 14900 and ${}^{4}A_{2g}$	$\rightarrow {}^{4}T_{2g}$	
	(c) 14900 and ${}^{4}T_{2g}$	\rightarrow ${}^{4}T_{1g}(F)$	(d) 7800 and ${}^{4}T_{2g}$ –	$\rightarrow {}^{4}T_{1g}(F)$	
94.	[Ni ¹¹ L ₆] ^{n+or n-} shows a	bsorption bands at 85	500, 15400, and 26000 c	cm ⁻¹ whereas [Ni ^{II}	L'6] ⁿ⁺ or n-, at 10750,
	17500 and 28200 cn	n-1. L and L' are respe	ctively		[NET JUNE 2016]
	(a) OH- and N	(b) Cl- and I-	(c) NCS- and RCO	(d) H_2O and N	H ₃
95.	The number of micro	ostates present in 3F t	erm is		[NET JUNE 2016]
	(a) 3	(b) 21	(c) 9	(d) 28	

@madchemclasses

f

96.	The lowest energy ter	m for the d6 configura	tion is		[NET JUNE 2016]
	(a) ² D	(b)5D	(c) ¹ P	(d) 1D	
97.	Complex [Cr(bipyridy	l) ₃] ³⁺ , shows red phosp	horescence due to tran	sition	[NET JUNE 2016]
	(a) ${}^{4}T_{2g} \leftarrow {}^{4}A_{2g}$	(b) ${}^{4}T_{1g} \leftarrow {}^{4}A_{2g}$	(c) ${}^{4}A_{2g} \leftarrow {}^{2}E_{g}$	(d) ${}^{2}E_{g} \leftarrow {}^{4}A_{2g}$	
98.	The complex that show	ws orbital contribution	to the magnetic mome	nt, is	[NET JUNE 2016]
	(a) $[Cu(H_2O)_6]^{2+}$	(b) [Ni(H ₂ O) ₆] ²⁺	(c) $[Co(H_2O)_6]^{2+}$	(d) [Cr(H ₂ O) ₆]	2+
99.	Paramagnetic suscept	ibility of the order of 1	0 ⁻⁶ cm ³ mol ⁻¹ observed	for KMnO4 is du	ie to
					[NET JUNE 2016]
	(a) random spin align	ment (b) an	tiferromagnetic exchan	ge interaction	
	(c) paramagnetic imp	urity (d)ter	np <mark>eratu</mark> re independent	paramagnetism	l
100.	The room temperatur	e magnetic moment (µ	eff in BM) for a monom	eric Cu(II) com	plex is greater than 1.73.
	This may be explained	l using the expression	- /		[NET JUNE 2016]
	(a) $\mu_{\text{eff}} = \mu_{\text{s}} \left(1 - \frac{\alpha \lambda}{\Delta} \right)$		(b) $\mu_{\rm eff} = \sqrt{n(n+2)}$		
	(c) $\mu_{\rm eff} = \sqrt{4s(s+1)} +$	L(L+1)	(d) $\mu_{\rm eff} = g \sqrt{J(J+1)}$		
101.	Consider the following	statements for [FeO4] ⁻⁴			[NET DEC 2016]
	A. It is paramagnetic				
	B. It has Td symmetry				
	C. Adopts distorted squ	are plana <mark>r geometry</mark>			
	D. Shows approximatel	y D ₂ d symmetry The co	prrect answer is		
	(a) A, B and C	(b) A, C and D	(c) A and D	(d) A and B	
102.	The HOMO (highest o	ccupied molecular orb	ital) to LUMO (lowest u	noccupied mole	ecular orbital) electronic
	transition responsible	for the observed color	urs of halogen molecule	s (gas) is	[NET DEC 2016]
	(a) $\pi^* \rightarrow \sigma^*$	(b) $\pi^* \rightarrow \pi^*$	(c) $\sigma \rightarrow \sigma^*$	(d) $\pi \rightarrow \sigma^*$	
103.	In the hydrolysis of tra	$ans-[Co(en)_2 Cl(A)]^+$, if	the leaving group is ch	loride, the forma	tion of cis product is the
	least, when A is				[NET DEC 2016]
	(a) NO_2^-	(b) NCS ⁻	(c) Cl ⁻	(d) OH ⁻	
104.	The nephelauxetic para	meter β is highest for			[NET DEC 2016]
	(a) Br ⁻	(b) Cl ⁻	(c) CN ⁻	(d) F ⁻	
105.	The ${}^{2}E_{g} \leftarrow {}^{4}A_{2g}$ transition	on in the electronic spec	trum of $[Cr(NH_3)_6]^{3+}$ occ	curs nearly at	[NET DEC 2016]
	(a) 650 nm	(b) 450 nm	(c) 350 nm	(d) 200 nm	
106.	The spectroscopic gro	und state term symbol	s for the octahedral aqu	a complexes of	Mn(II), Cr(III) and
	Cu(II), respectively, ar	е			[NET DEC 2016]
	(a) 2 H, 4 F and 2 D	(b) 6 S, 4 F and 2 D	(c) 2 H, 2 H and 2 D	(d) ⁶ S, ⁴ F and ²	P

@madchemclasses

f

@madchemclasses 57880546666 WhatsApp 7380546666

Coordination Chemistry

For OH- catalysed S_N1 conjugate base mechanism of $[Co(NH_3)_5Cl]^{2+}$, the species obtained in the first step of 107.

	the reaction is / are		[NET DEC 2016]
	(a) [Co(NH ₃) ₅ (OH)] ²⁺ + Cl ⁻	(b) [Co(NH ₃) ₄ (NH ₂)Cl] ⁺	+ H ₂ O
	(c) [Co(NH ₃) ₄ (NH ₂)] ²⁺ + Cl ⁻	(d) [Co(NH ₃) ₅ Cl(OH) ⁺ c	only
108.	Match the species in column X with	heir properties in column Y	[NET DEC 2016]
	Column –X	Column – Y	
	(1) Heme A	(i) Oxo- bridged, Mn4 cluster	
	(2) Water splitting enzyme	(ii) Tetragonal elongation	
	(3) $[Mn(H_2O)_6]^{2+}$	(iii) Predominantly $\pi \rightarrow \pi^*$, elec	tronic transitions
	(4) $[Cr(H_2O)_6]^{2+}$	(iv) $d \rightarrow d$ spin-forbidden tran	sitions
		(v) Tetragonal compression	
	The correct answer is		
	(a)(1)-(iii), (2)-(i), (3)-(v), (4)-(ii)	(b) (1)–(iii), (2)–(i), (3)–(iv), (4	4)-(ii)
	(c) (1)–(v), (2)–(iii), <mark>(3)</mark> –(iv), (4)–(ii) (d) (1) –(iii), (2)–(i), (3)–(iv), ((4)-(v)
109.	In the following redox reaction with	an equilibrium constant K = 2.0 >	< 10 ⁸ , [NET DEC 2016]
	$[Ru(NH_3)_6]^{2+} + [Fe(H_2O)_6]^{3+} \rightleftharpoons [Ru(N)_6]^{3+}$	H <mark>3)6]³⁺ + [Fe(H2O)6]²⁺</mark>	
	the self exchange rates for oxidant a	n <mark>d recut</mark> ant are 5.0 <mark>M⁻¹ s⁻¹ a</mark> nd 4.0	$0 imes 10^3M^{-1}s^{-1}$, respectively. The
	approximate rate constant (M ⁻¹ s ⁻¹) 1	o <mark>r the react</mark> ion is	
	(a) 3.16 × 10 ⁶ (b) 2.0 × 10 ⁶	(c) 6.3 <mark>2 × 10⁶</mark>	(d) 3.16 × 10 ⁴
110.	Consider the following sulfur donor at	om bearing bidentate ligand where	X and name of ligands are given in
	following columns		[NET JUNE 2017]
	S		
	X Ligan	d Name	
	A. NR ₂ I. Dit	niocarbonate	
	B. OR II. Di	hicarbamet	
	C. O ⁻ III. X	anthate	
	D. SR IV. T	hioxanthate	
	Correct match of entries given in two	columns is	
	(a) A–II, B–III, C–I, D–IV	(b) A–I, B–II, C–III, D–IV	
	(c) A–III, B–II, C–IV, D–I	(d) A–IV, B–I, C–II, D–III	
111.	A copper (II) complex having distorted	l octahedral geometry shows an aba	sorption band at 625 nm. Given spin-
	orbit coupling of the complex as 625 c	m^{-1} , the μ_{eff} (in B.M.) is	[NET JUNE 2017]
	(a) 1.73 (b) 1.81	(c) 1.63	(d) 1.93
112.	CdS, HgS and Bil ₃ , are coloured due	0	[NET JUNE 2017]
ŧ	Visit On www.madchemclasses.online	mclasses @Madchem Classes Chemi	stry @madchemclasses 😥 7880546666 7380546666

(a) $L \rightarrow M$ charge transfer transitions (b) $d \rightarrow d$ electronic transitions (c) $M \rightarrow L$ charge transfer transitions (d) combination of L \rightarrow M charge transfer and d \rightarrow d electronic transitions 113. The relative rates of water exchange for the hydrated complexes of (1) Ni²⁺, (2) V²⁺ and (3) Cr³⁺ ions follows the trend [NET JUNE 2017] (b) (1) < (2) < (3)(c)(1) > (2) < (3)(a) (1) > (2) > (3)(d)(1) < (2) > (3)Consider the following statements for octahedral complexes, (a) $[CrF_6]^{3-}$, (b) $[Cr(ox)_3]^{3-}$ and (c) 114. $[Cr(en)_3]^{3+}$: [NET JUNE 2017] A. their d \rightarrow d transitions are at 14900, 17500, and 21800 cm⁻¹, respectively B. Their spin-only magnetic moments are same C. Two of them have optical isomers D. All of them show Jahn-Teller distortion The correct statements are (a) A, B and C (b) A, C, and D (c) B, C, and D (d) B and D The μ_{eff} of [Fe(S₂CNEt₂)₃] changes with temperature with the involvement of two electronic states. The 115. **[NET JUNE 2017]** states are (a) Low spin ${}^{2}T_{2g}$ and high-spin ${}^{6}A_{1g}$ (b) low spin ${}^{1}A_{1g}$ and high-spin ${}^{3}T_{2g}$ (c) low spin ${}^{2}E_{g}$ and high – spin ${}^{6}A_{1g}$ (d) low spin ${}^{2}T_{2g}$ and high-spin ${}^{4}T_{1g}$ 116. Match the items in the three columns. **[NET JUNE 2017]**

Complex (column 1)	Color (column 2)	Absorption max	
		(λmax, nm) (column 3)	
A. $[Ni(H_2O)_6] (NO_3)_2$	I. Blue	X. 675	FC
B. [Ni(NH ₃) ₆] (NO ₃) ₂	II. Green	Y. 565	$\cup \supset$
C. [Ni(en) ₃] (NO ₃) ₂	III. Violet	Z. 615	
	Complex (column 1) A. [Ni(H ₂ O) ₆] (NO ₃) ₂ B. [Ni(NH ₃) ₆] (NO ₃) ₂ C. [Ni(en) ₃] (NO ₃) ₂	Complex (column 1) Color (column 2) A. [Ni(H ₂ O) ₆] (NO ₃) ₂ I. Blue B. [Ni(NH ₃) ₆] (NO ₃) ₂ II. Green C. [Ni(en) ₃] (NO ₃) ₂ III. Violet	Complex (column 1) Color (column 2) Absorption max (λmax, nm) (column 3) A. [Ni(H ₂ O) ₆] (NO ₃) ₂ I. Blue X. 675 B. [Ni(NH ₃) ₆] (NO ₃) ₂ II. Green Y. 565 C. [Ni(en) ₃] (NO ₃) ₂ III. Violet Z. 615

The correct answer is

(a) A–II–X; B–I–Z; C–III-Y (b) A–I–X; B–II–Y; C–III-Z

(c) A–III-Y; B-I-Z; C-II-X (d) A-I–X; B-II-Z; C-III-Y

117. Br^2 with propanone forms a charge transfer complex and l^2 forms triiodide anion with l-. This implies that

[NET DEC 2017]

(a) Both Br^2 and l^2 act as bases

ww.madchemclasses.online

Visit On

- (b) both Br^2 and l^2 act as acids
- (c) Br^2 acts as an acid and l^2 acts as a base

@madchemclasses

@Madchem Classes Chemistry

(d) Br^2 acts as a base and 1^2 acts an acid

118. For the following complexes, the increasing order of magnetic moment (spin only value) is [NET DEC 2017] A. [TiF₆]³⁻ B. $[CrF_6]^{3-}$ C. [MnF₆]³⁻ D. [CoF₆]³⁻ (a) D < A < B < C (b) C < A < D < B(c) $B \approx A < D < C$ (d) $A < B < C \approx D$ 119. In trigonal prismatic ligand field, the most stabilized d orbital is [NET DEC 2017] (a) d_{7}^{2} (d) d_{vz} (b) d_{xy} (c) d_{xz} 120. [NET DEC 2017] Mismatch among the following is (a) Sharp transition and fluorescence in lanthanides (b) Broad bands and d-d transitions (c) Very high spin-orbit coupling and transition elements (d) Charge transfer and molar absorptivity of the order of 10⁴ L mol⁻¹ cm⁻¹ 121. For high spin and low spin d^6 octahedral complexes (ML₆), the generally observed spin allowed transitions, respectively, are [NET DEC 2017] (a) two and one (b) one and two (c) zero and one (d) two and two 122. The geometry around Cu and its spin state for K_3CuF_6 and $KCuL_2$, $[H_2L = H_2NCONHCONH_2]$, respectively are [NET DEC 2017] • (a) (Octahedral, high-spin) and (square planar, low-spin) (b) (Octahedral, low-spin) and (square planar, low-spin) (c) (trigonal prismatic, high-spin) and (tetrahedral, high-spin) (d) (trigonal prismatic, low-spin) and (tetrahedral, high-spin) 123. Consider the following statements with respect to the base hydrolysis of $[CoCl(NH_3)_5]^{2+}$ to $[Co(NH_3)_5(OH)^{2+}]$ [NET DEC 2017] A. One of the ammonia ligands acts as a Bronsted acid. B. The entering group is water. C. A heptacoordinated Co³⁺ species is an intermediate. The correct statement(s) is/are (a) A and B (b) A and C (c) B and C (d) C only 124. The total degeneracy of the ground term of Col1 (high spin) in octahedral geometry is **[NET JUNE 2018]** (a) 18 (b) 12 (c) 28 (d) 9 The lowest energy state of a $1s^1 2s^1$ electronic configuration, according to hund's rule, is **[NET JUNE 2018]** 125. (a) ${}^{3}S_{0}$ (b) ${}^{1}S_{0}$ (c) ${}^{3}S_{1}$ (d) ${}^{1}S_{1}$ 126. The allowed electronic transition in fluorine molecule is [NET JUNE 2018] (c) $\Sigma_g^+ \to \pi_u$ (b) $\Sigma_a^+ \rightarrow \Sigma_a^+$ (d) $\Sigma_a^+ \to \Delta_u$ (a) $\Sigma_a^+ \to \Sigma_a^+$ For magnesium complex of EDTA²⁻, the number of N-donor and O-donor centers respectively are 127. **[NET JUNE 2018]**

	(a) Two and four	(b) Two and two	(c) two and six	(d) Two and eig	ght
128.	High spin complex of	of a 3d metal ion M has a	magnetic moment of	2.9 B.M. in octahe	dral coordination
	environment and 4.	.1 B.M. in tetrahedral env	vironment. The M ion	is	[NET JUNE 2018]
	(a) Co ^{III} (b)	Ni ^{II} (c) C	u ^{II} (d)	Соп	
129.	For electronic spect	tra of $K_2CrO_4(A)$ and K_2M	IoO ₄ (B) the correct co	ombination is	[NET JUNE 2018]
	(a) Transition is d-o	d and λ max for A < B			
	(b) transition is LM	CT and λ max for A < B			
	(c) Transition is LM	ICT and λ max for A > B			
	(d) transition in ML	CT and λ max for A > B			
130.	Choose the correct	set of statements for cis,	/platin.		[NET JUNE 2018]
	(A) It can be prepar	ed from K ₂ [PtCl ₄]			
	(B) It can be prepar	ed from [Pt(NH ₃) ₄]Cl ₂			
	(C) In its preparation	on, t <mark>he</mark> observed trans ef	fect for Cl- is greater t	than that of NH ₃ .	
	(D) In blood it stays	s i <mark>n e</mark> quilibrium with cis-	-[Pt(NH ₃) ₂ Cl(H ₂ O)] ⁺		
	(E) In DNA strand, i	i <mark>t b</mark> onds to two adjacent	cytosine bases		
	The correct set is				
	(a) A, C and D	(b) A, C , D <mark>and E</mark>	(c) B, C and D	(d) B, C, D and	Е
131.	Consider the follow	ing stateme <mark>n</mark> ts			[NET JUNE 2018]
	(A) Cr ²⁺ is easier to	oxidise than V ²⁺ in the			
	(B) Cr^{2+} (aq) is a mo	ore powerfu <mark>l reducing</mark> ag	gent than V ²⁺ (aq)		
	(C) The rate of wate	er exchange for Cr²+ (aq)	is much faster than fo	or V ²⁺ (aq)	
	The correct stateme	ents are			
	(a) A and B	(b) A and C	(c) B and C	(d) A, B and C	
132.	Consider the staten	nents A–D regarding equ	ation I–III:		[NET JUNE 2018]
	(I) [Fe(CN) ₆] ³⁻ + [Co	$p(CN)_5]^{3-} \rightarrow [Fe(CN)_6]^{4-}$	+ [Co(CN)5] ²⁻		
	(II) [Co(bipy) ₃] ²⁺ +	$[Co^* (bipy)_3]^{3+} \rightarrow [Ci(bip)_3]^{3+}$	y) ₃] ³⁺ + [Co*(bipy) ₃] ²	· sm	
	(III) [Co(NH ₃) ₅ F] ²⁺	$[Cr(H_2O)_6]^{2+} \rightarrow [Co(NH_3)]^{2+}$	$_{5}(H_{2}O)]^{2+} + [Cr(H_{2}O)_{5}]^{2+}$	F] ²⁺	
	(A) Marcus equation	n is applicable to I and II			
	(B) Marcus equation	n is applicable to II only			
	(C) Equation I and I	I involve inner sphere e	ectron transfer		
	(D) Equations I and	III involve inner sphere	electron transfer		
	(a) A and B	(b) B and C	(c) B and D	(d) C and D	
133.	The intermediate [H	$Fe(SCN)(H_2O)_5]^{2+}$ is determined	cted in the reaction of	f [Co(NCS)(NH ₃) ₅] ²⁺	with $[Fe(H_2O)_6]^{2+}$ in
	aqueous medium to	produce [Co(H ₂ O) ₆] ²⁺ a	nd [Fe(H ₂ O) ₆] ³⁺		[NET DEC 2018]
_	The mechanism of t	the reaction is			
	Visit On www.madchemclasses.c	online f @madchemclasses	@Madchem Classes (Chemistry 🔘 @madch	emclasses () WhatsApp 7880546666 7380546666

- (a) Interchange dissociative
- (c) Inner sphere electron transfer
- (b) Interchange associative

(d) Outer sphere electron transfer

- 134.The correct set of electronic configuration for metal ions in octahedral coordination geometry for strong
Jahn-Teller distortion is[NET DEC 2018]
 - (a) $t_{2g}^6 e_g^1, t_{2g}^3 e_g^1, t_{2g}^6 e_g^3$ (b) $t_{2g}^1, t_{2g}^3 e_g^1, t_{2g}^6, e_g^1$ (c) $t_{2g}^3, t_{2g}^3 e_g^1, t_{2g}^3 e_g^2$ (d) $t_{2g}^3 e_g^2, t_{2g}^6 e_g^2, t_{2g}^6 e_g^3$

135. The correct order of intensity of the d-d transitions in the complexes of a 3d- transition metal ion M²⁺ is

[NET DEC 2018]

- (a) cis $[M(H_2O)_4Cl_2] > trans [M(H_2O)_4Cl_2] > [M(H_2O)_6]^{2+}$
- (b) $[M(H_2O)_6]^{2+} > cis [M(H_2O)_4Cl_2] > trans [M(H_2O)_4Cl_2]$
- (c) trans- $[M(H_2O)_4Cl_2] > cis [M(H_2O)_4Cl_2] > [M(H_2O)_6]^{2+}$
- (d) $[M(H_2O)_6]^{2+}$ cis $[M(H_2O)_4Cl_2] \approx \text{trans} [M(H_2O)_4Cl_2]$

136.

The isomers A and B undergo base hydrolysis by forming a trigonal bipyramidal intermediate. The correct statement is [NET DEC 2018]

- (a) A reacts faster than B and both results in a mixture of products
- (b) B reacts faster than A and both results in a mixture of products
- (c) A reacts faster than B and B results in a mixture of products
- (d) B reacts faster than A and A results in a mixture of products.
- 137. Consider the two sets of molecules.

Set A : [AlF₆]³⁻, [PF₆]⁻, [SF₆] and [SiF₆]²⁻

Set B: [Ba(H₂O)₆]²⁺, [Ca(H₂O)₆]²⁺, [Mg(H₂O)₆]²⁺, [Sr(H₂O)₆]²⁺

The slowest ligand exchange rate in Set A and Set B are, respectively

- (a) $[AlF_6]^{3-}$ and $[Sr(H_2O)_6]^{2+}$
- (b) $[SF_6]$ and $[Mg(H_2O)_6]^{2+}$
- (c) $[SiF_6]^{2-}$ and $[Ca(H_2O)_6]^{2+}$ (d) $[PF_6]^{-}$ and $[Ca(H_2O)_6]^{2+}$
- 138. Consider the following reaction :

 $Hg^{+2}(aq) + X^{-}(aq) = [HgX]^{+}(aq)$

The stability constants for $[HgX]^+$ (aq) for X = F, Cl and Br follow the order

(a) F < Cl < Br (b) Br < Cl < F (c) Cl < Br < F (d) Br < F < Cl

[NET DEC 2018]

[NET JUNE 2019]

 \mathbf{C}

139. An aqueous solution of metal ion (A) gives a blood-red colored product (B) upon reaction with KSCN. Upon dropwise addition of NaF, the complex turns to a colorless compound (C), Identify A, B and C

		[NET JUNE 2019]
	(a) aq. Fe(II), $[Fe(SCN)(H_2O)_5]^+$ and $[Fe(H_2O)_6]^{+2}$	
	(b) aq. Fe(III), $[Fe(SCN)(H_2O)_5]^{+2}$ and $[FeF_6]^{+3}$	
	(c) aq. Fe(II), $[Fe(SCN)(H_2O)_5]^+$ and FeF_3	
	(d) aq. Fe(III), $[Fe(SCN)_3(H_2O)_3]^+$ and FeF_3	
140.	Self –exchange electron transfer is fastest in	[NET JUNE 2019]
	(a) $[Ru(NH_3)_6]^{2+/3+}$ (b) $[Co(NH_3)_6]^{2+/3+}$ (c) $[Cr(OH_2)_6]^{2+/3+}$ (d) $[Fe(OH_2)_6]^{2+/3+}$]2+/3+
141.	The allowed transition in an atomic system is	[NET JUNE 2019]
	(a) ${}^{3}F_{4} \rightarrow {}^{3}D_{3}$ (b) ${}^{3}F_{4} \rightarrow {}^{1}D_{3}$ (c) ${}^{3}F_{4} \rightarrow {}^{3}P_{4}$ (d) ${}^{3}F_{4} \rightarrow {}^{3}D_{2}$	
142.	The correct set of information is	[NET JUNE 2019]
	(a) $[Mn(H_2O)_6]^{2+}$: $\mu_{observed} = \mu_{spin}$; $[Co(H_2O)_6]^{3+}$: Paramagnetic	
	(b) $[Mn(H_2O)_6]^{2+}$: $\mu_{observed} > \mu_{spin}$; $[Co(H_2O)_6]^{3+}$: Diamagnetic	
	(c) $[Mn(H_2O)_6]^{2+}$: $\mu_{observed} = \mu_{spin}$; $[Co(H_2O)_6]^{3+}$: Diamagnetic	
	(d) $[Mn(H_2O)_6]^{2+}$: $\mu_{observed} > \mu_{spin}$; $[Co(H_2O)_6]^{3+}$: Paramagnetic	
143.	Consider the following statements regarding electronic spectra of high spin comple	exes[NET JUNE 2019]
	(A) Ti ³⁺ complexes exhibit one <mark>shar</mark> p band.	
	(B) Co ²⁺ and Cr ³⁺ complexes ex <mark>hi</mark> bi <mark>t two broad ba</mark> nds.	
	(C) Mn ²⁺ complexes exhibit a se <mark>ries of very weak and sharp bands.</mark>	
	(D) Ni ²⁺ complexes exhibit three broad bands.	
	The correct statements are.	
	(a) A and C (b) A, C and D (c) C and D (d) B,	C and D
144.	Hydrolysis of trans–[CoLCl(en) ₂]+ (L = NO ₂ ⁻ , NCS-, OH-, Cl-) results in a product (A).	The tendency to form
	cis-isomer of the product (A) follows the order.	[NET JUNE 2019]
	(a) $L = NO_2^- < NCS^- < OH^- < Cl^-$ (b) $L = NO_2^- < Cl^- < NCS^- < OH^-$	
	(c) $L = OH^- < CI^- < NO_2^- < NCS^-$ (d) $L = OH^- < NCS^- < CI^- < NO_2^-$	
145.	An aqueous solution of metal ion (A) gives a blood-red colored product (B) upon r	eaction with KSCN. Upon
	dropwise addition of NaF, the complex turns to a colorless compound (C). Identify	A, B and C
		[NET JUNE 2019]
	(a) aq. Fe(II), $[Fe(SCN)(H_2O)_5]^+$ and $[Fe(H_2O)_6]^{2+}$	

- (b) aq. Fe(III), [Fe(SCN)(H_2O)₅]⁺ and [FeF₆]³⁺
- (c) aq. Fe(II), $[Fe(SCN)(H_2O)_5]^+$ and FeF_3
- (d) aq. Fe(III), [Fe(SCN) $_3$ (H $_2$ O) $_3$]⁺ and FeF $_3$

 \odot

Considering σ -bonding only, in the MO diagram of a metal complex with trigonal bipyramidal (TBP) 146. geometry, the d-orbitals which remain non-bonding are **[NET JUNE 2019]** (a) d_{z^2} and d_{xz} (b) d_{xz} and d_{yz} (c) $d_{x^2-y^2}$ and d_{xy} (d) d_{z^2} and d_{vz} In the electronic spectrum of $[IrBr_6]^{2-}$, the number of charge transfer band (s) and their origin are respectively 147. [NET DEC 2019] (a) Two ligand \rightarrow metal (6 Δt_{2g} and 6 $\rightarrow a_{1g}^*$) (b) One ligand \rightarrow metal ($6 \rightarrow e_g$) (c) Two ligand \rightarrow metal (6 \rightarrow t_{2g} and 6 \rightarrow e_g) (d) One ligand \rightarrow metal (6 \rightarrow t_{2g}) Correct order of molar extinction coefficient values of the visible absorption bands for the following species is 148. [NET DEC 2019] (a) $[Cr(H_2O)_6]^{2+} > [Mn(H_2O)_6]^{2+} > Chlorophyll > [NiCl_4]^{2-}$ (b) Chlorophyll > $[NiCl_4]^2$ > $[Cr(H_2O)_6]^2$ > $[Mn(H_2O)_6]^2$ (c) $[NiCl_4]^{2-} > Chlorophyll > [Cr(H_2O)_6]^{2+} > [Mn(H_2O)_6]^{2+}$ (d) Chlorophyll > $[Cr(H_2O)_6]^{2+}$ > $[NiCl_4]^{2-}$ > $[Mn(H_2O)_6]^{2+}$ For an octahedral Cu^{2+} complex depicting axial EPR spectrum (g) > g \perp), the geometry of Cu^{2+} and the orbital 149. containing the unpaired electron are, respectively. [NET DEC 2019] (a) Tetragonally elongated, $d_{x^2-y^2}$ (b) Tetragonally compressed, d_{z^2} (c) Tetragonally elongated, d_{τ^2} (d) Tetragonally compressed, $d_{\chi^2-\nu^2}$ 150. The most stable vandium species in aqueous medium is [NET DEC 2019] (b) $[VO(H_2O)_5]^{2+}$ (a) $[V(H_2O)_5(OH)^{2+}]$ (d) $[V(H_2O)_4(OH)_2]^{2+}$ (c) $[VO(H_2O)_3]^+$ In the electronic spectrum of $[IrBr_6]^{2-}$ the number of charge transfer band (s) and their origin are, respectively: 151. [NET DEC 2019] (a) Two, ligand \rightarrow metal ($\sigma \rightarrow t_{2g}$, and $\sigma \rightarrow a_{1g}^*$) (b) One, ligand \rightarrow metal ($\sigma \rightarrow e_g$) (c) Two, ligand \rightarrow metal ($\sigma \rightarrow t_{2g}$ and $\sigma \rightarrow e_g$) (d) One, ligand \rightarrow metal ($\sigma \rightarrow t_{2g}$) FeCr₂O₄ and NiGa₂O₄ have normal and inverse spinel structures, respectively. The correct statement is : 152. [NET DEC 2019] (1) Fe(II) and Ni(II) occupy octahedral sites (2) Fe(II) and Ni(II) occupy tetrahedral and octahedral sites, respectively (3) Cr(III) and Ga(III) occupy only octahedral sites (4) Cr(III) and Ga(III) occupy tetrahedral and octahedral sites, respectively 153. The correct match of spin–only magnetic moment for the complexes cis-[Fe(phen)₂(NCS–N)₂][NET DEC 2019] (A) and $[Fe(phen)_3]$ Cl₂ (B) at 300 K is (phen) = 1, 10-phenanthroline)

@Madchem Classes Chemistry

@madchemclasses

7880546666

7380546666

 \bigcirc

	(a) 4.89 BM for both	A and B	(b) 0 BM for both A as	(b) 0 BM for both A and B				
	(c) 4.89 BM for A an	nd 0 BM for B	(d) 0 BM for A and 4.	(d) 0 BM for A and 4.89 BM for B $$				
154.	The correct statemen	dine) is	[NET DEC 2019]					
	(a) rate expression is	, Rate = $k[Co(py)_4Cl_2][Co(py)_4Cl_2]$	DH⁻]					
	(b) reaction does not	action does not depend on hydroxide ion concentation						
	(c) reaction proceeds through S _N 1 CB mechanism							
	(d) intermediate invo							
155.	Consider the followi		[NET DEC 2019]					
	(A) The highest oxid	ation state of Group 3 ele	ements is more readily sho	own in their oxide	es than in fluorides.			
	(B) Fe can exist in –	2 formal oxidation state a	lso.					
	(C) Mn, Tc and Re e	asily form M (II) compo	inds.					
	The correct statement	t(s) is / are:						
	(a) A and B	(b) A and C	(c) B and C	(d) C only				
156.	Self – exchange elec	tro <mark>n</mark> transfer is fastest i	n		[NET DEC 2019]			
	(a) $[Ru(NH_3)_6]^{2+/3+}$	(b) $[Co(NH_3)_6]^{2+/3+}$	(c) [Cr(OH ₂) ₆] ^{2+/3+}	(d) [Fe(OH ₂) ₆]	2+/3+			
157.	The allowed transit	ion in an atomic system	is		[NET DEC 2019]			
	(a) ${}^{3}F_{4} \rightarrow {}^{3}D_{3}$	(b) ³ F ₄ → $^{1}D_{3}$	(c) ${}^{3}F_{4} \rightarrow {}^{3}P_{4}$	(d) ${}^{3}F_{4} \rightarrow {}^{3}D_{2}$				
158.	The correct set of ir	iformation is			[NET DEC 2019]			
	(a) $[Mn(H_2O)_6]^{2+}$: μ	observed = μ_{spin} ; [Co(H ₂ O)	₆] ³⁺ : Paramagnetic					
	(b) [Mn(H ₂ O) ₆] ²⁺ : µ	$L_{\rm observed} > \mu_{\rm spin}; [Co(H_2O)]$	₆] ³⁺ : Diamagnetic					
	(c) $[Mn(H_2O)_6]^{2+}$: μ	_{observed} = μ_{spin} ; [Co(H ₂ O)	₆] ³⁺ : Diamagnetic					
	(d) [Mn(H ₂ O) ₆] ²⁺ : µ	$L_{observed} > \mu_{spin}$; [Co(H ₂ O)	₆] ³⁺ : Paramagnetic					
159.	Consider the follow	ing statements regardin	ng electronic spectra of h	igh spin comple	xes[NET DEC 2019]			
	(A) Ti ³⁺ complexes	exhibit one sharp band.						
	(B) Co ²⁺ and Cr ³⁺ complexes exhibit two broad bands.							
	(C) Mn ²⁺ complexes	exhibit a series of very	weak and sharp bands.					
	(D) Ni ²⁺ complexes exhibit three broad bands.							
	The correct statements are							
	(b) A and C	(b) A, C and D (c) $($	Cand D (d) B,	C and D				
160.	Hydrolysis of trans– $[CoLCl(en)_2]^+$ (L = N O_2^- , NCS-, OH-, Cl-) results in a product (A). The tendency to form							
	cis-isomer of the pr	oduct (A) follows the o	·der.		[NET DEC 2019]			
	(a) $L = NO_2^- < NCS^-$	$< OH^{-} < Cl^{-}(b) L = NO_{2}^{-}$	< Cl- < NCS- < OH-					
	(c) L = OH- < Cl- < N	$O_2^- < \text{NCS}$ - (d) L = OH-	< NCS- < Cl- < N <i>O</i> ₂					

@madchemclasses

f

Coordination Chemistry

7380546666

An aqueous solution of metal ion (A) gives a blood-red colored product (B) upon reaction with KSCN. Upon 161. dropwise addition of NaF, the complex turns to a colorless compound (C). Identify A, B and C

		[NET DEC 2019]
	(a) aq. Fe(II), [Fe(SCN)(H_2O) ₅] ⁺ and [Fe(H_2O) ₆] ²⁺	
	(b) aq. Fe(III), [Fe(SCN)(H_2O) ₅] ⁺ and [FeF ₆] ³⁺	
	(c) aq. Fe(II), [Fe(SCN)(H_2O) ₅] ⁺ and FeF ₃	
	(d) aq. Fe(III), [Fe(SCN) ₃ (H ₂ O) ₃]+ and FeF ₃	
162.	Considering σ -bonding only, in the MO diagram of a metal complex with trig	onal bipyramidal (TBP)
	geometry, the d-orbitals which remain non-bonding are	[NET DEC 2019]
	(a) d_{z^2} and d_{xz} (b) d_{xz} and d_{yz} (c) $d_{z^2-y^2}$ and d_{xy} (d) d_{z^2} and d_y	z
163.	I_2 is violet in the solid as well as in gas phase. However in acetone or ethanol, it turns bro	own. Choose the correct
	statement(s) for this colour change:	[NET NOV 2020]
	(a) Dissociation of I_2 in atomic state	
	(b) Interaction of low-lying 6*–orbital of iodine with lone pair of O (solvent)	
	(c) Formation of a charge-transfer complex	
164.	For the d ³ electron configuration, the ground state term symbol is	[NET NOV 2020]
	(a) ${}^{4}F_{1/2}$ (b) ${}^{4}F_{3/2}$ (c) ${}^{4}F_{7/2}$ (d) ${}^{4}F_{9/2}$	
165.	The products A and B for the giv <mark>en reaction</mark>	[NET NOV 2020]
	$[Co(NH_3)_5Cl]^{+2} + [Cr(OH_2)_6]^{+2} + \frac{5}{2}H_3O^+ \rightarrow A+B$	
	are respectively,	
	(a) $[Co(OH_2)_5Cl]^+$, $[Cr(OH_2)_6]^{+3}$ (b) $[Co(NH_3)_5(OH_2)_5Cl]^{+3}$	[] ⁺²
	(c) $[Co(OH_2)_6]^{+2}$, $[Cr(OH_2)_5Cl]^{+2}$ (d) $[Co(NH_3)_5Cl]^+$, $[Cr(OH_2)_5Cl]^{+2}$	$(OH_2)_6]^{+3}$
166.	The number of expected electronic transitions in $[Cr(en)_3]^{+3}$ and trans $- [Cr(en)_2F]^+$ at 4	K is, respectively (en =
	ethylenediamine)	[NET NOV 2020]
	(a) 3 and 3 (b) 3 and 4 (c) 3 and 5 (d) 3 and 6	
167.	The products A and B for the given reaction	[NET NOV 2020]
	$[Co(NH_3)_5Cl]^{2+} + [Cr(OH_2)_6]^{2+} + 5H_3O^+ \rightarrow A + B$	
	are, respectively	
	(a) $[Co(OH_2)_5Cl]^+$, $[Cr(OH_2)_6]^{3+}$ (b) $[Co(NH_3)_5(OH_2)]^{2+}$, $[Cr(OH_2)_5Cl]^{2+}$	
	(c) $[Co(OH_2)_6]^{2+}$, $[Cr(OH_2)_5Cl]^{2+}$ (d) $[Co(NH_3)_5Cl]^+$, $[Cr(OH_2)_6]^{3+}$	
168.	The number of expected electronic transitions in $[Cr(en)_3]^{3+}$ and trans- $[Cr(en)_2F_2]^{3+}$]+ at 4 K is, respectively
	(en = ethylenediamine)	[NET NOV 2020]
	(a) 3 and 3 (b) 3 and 4 (c) 3 and 5 (d) 3 and 6	
169.	The value of magnetic moment will be independent of temperature for	[NET NOV 2020]
	(acac = acetylacetonato: OAc = acetate : o-phen = o-phenathroline. Pz = pyrazolyl)	
Æ	www.madchemclasses.online	7380546666

f

www.madchemclasses.online

	(a) [Fe(acac) ₃]	(b)	$[Cu_2(OAc)_4(H_2O)_2]$		
	(c) [Fe(o-phen) ₂)(NC	[S] ₂]	(d) [Fe{HC(3.5-Me2	$Pz_{3}^{2}^{2+}$	
170.	The correct electroni	c configuration of from	ntier MO's of)°)-]	[NET NOV 2020]
	$Mn(n^5-C_5Me_5)_2$ is	U			
	(a) $e_{2a}^2 a_{1a}^1 e_{1a}^2$	(b) $e_{2a}^4 a_{1a}^1$	(c) $e_{2a}^3 a_{1a}^2$	(d) $a_{1a}^2 e_{2a}^3$	
171.	For the given reaction	n		() 19 29	[NET NOV 2020]
	[*Co(L) _n] ²⁺ + [Co(L) _n]	$ ^{3+} \rightarrow [^{*}Co(L)_{n}]^{3+} + [Co(L)_{n}]^{3+}$	$(L)_{n}^{2+}$		
	the correct statement	t with respect to the r	ate of electron transfer	process is	
	o-phen = o-phenanth	roline; *Co is labeled	atom	1	
	(a) fast electron tran	sfer ; $L = NH_3$; $n = 6$			
	(b) slow electron tra	nsfer ; L = o-phen; n =	3		
	(c) Very slow electro	on transfer; $L = NH_3$; r	u = 6		
	(d) Very slow electro	on <mark>transfer; L = o-phe</mark> r	i; n = 3		
172.	The pair of compoun	ds in which both mem	bers show LMCT band	in their electroni	ic spectra is
					[NET NOV 2020]
	(a) [FeCl ₄] ²⁻ and [Fe(bpy) ₃] ²⁺ (b)	FeBr ₄] ²⁻ and [TcO ₄] ⁻		
	(c) [ReO ₄]- and [Ru(b	opy) ₃] ²⁺	(d) [Fe(ph <mark>en)₃]²⁺ a</mark> n	d [FeCl4]2-	
173.	The number of geom	etrical isomers of the	complex [RhH(C=CR)2(PMe ₃)3] is	[NET NOV 2020]
	(a) 2	(b) 3	(c) 4	(d) 1	
174.	Of the following states	ments regarding dissoci	ative substitution in an o	ctahedral transition	on metal complex,
	(a) High steric hindran	nce between in the meta	l complex favors fast dis	sociation of ligan	d.
					[NET FEB 2022]
	(b) Increased charge of	n the metal complex fa	st dissociation of ligand.		
	(c) A pentacoordinated	d intermediate is observ	ved.		
	(d) Nature of the enter	ing ligand significantly	influences the reaction.		
	Which are correct ?	()	ITTE C	Sher	2202
	(a) a and d	(b) a and c	(c) a, c and d	(d) a, b, c and	d
175.	Consider an octahedi	ral complex Ma ₂ b ₂ cd,	where a, b, c and d are n	nonodentate liga	inds, The number of
	enantiomeric pairs fo	or the complex is			[NET FEB 2022]
170	(a) One	(b) two	(c) three	(a) Four	halana tha manalanath af
1/6.	For the ligand-to-me	tal charge-transfer (L	MCI) transitions in the	oxo-anion given	below, the wavelength of
	the order $(a)VO^{3-} < CrO^{2-} < M$	10^{-1} and WO^{2-1} (Mat	n^{2-} $c_{m} \alpha^{2-}$		[NET FEB 2022]
	$(a) V U_4^3 < C U_4^2 < M$	100_4 and $100_4^2 < Mol}$	$D_{4}^{2} = C_{1} D_{4}^{2}$		
	(b) $VO_4^3 < CrO_4^2 < N$	$4 \text{ n}O_4$ and $WO_4^2 > MO_4$	U_{4}^{2} $U_{1}U_{4}^{2}$		
_	$(C) \vee U_{4}^{-} > CrU_{4}^{-} < \mathbb{N}$	1110_4 and 100_4 < Mo	U4 U1U4		
ŧ	Visit On www.madchemclasses.on	line f @madchemclasses	@Madchem Classes Cl	hemistry 🕜 @made	chemclasses 57880546666 7380546666

 \odot

@madchemclasses

	(d) $VO_4^{3-} > CrO_4^{2-} < Mr$	nO_4^- and $WO_4^{2-} > MoO_4^{2-}$ Cr(D_4^{2-}	
177.	Consider t he following	g statements for the self-exc	hange electron trans	fer reaction in $[Cr(H_2O)_6]^{2+/3+}$
				[NET FEB 2022]
	(a) σ^* orbitals are only	involved in electron transf	er	
	(b) It involves large in	ner-sphere reorganization e	nergy	
	(c) It involves no chang	ge in M-L bond lengths		
	(d) Rate of self-exchan	ge electron transfer is fast		
	The correct statements	s are		
	(a) a, b and d	(b) a and b	(c) a and	c (d) b and d
178.	Consider the following	statements regarding EPR	spectra :	[NET FEB 2022]
	(a) For allowed transit	tions, $\Delta Ms = \pm 1$ and $\Delta M1 = 0$		
	(b) For allowed transit	tions, $\Delta Ms = 0$ and $\Delta M1 = \pm 1$	· / ·	
	(c) Tetragonally elonga	ated Cu(II) complexes have	g _{II} > g⊥.	
	(d) The orbital conside	ered as ground state for tetr	agonally compressed	Cu(II) complexes is $d_{x^2-y^2}$.
	The correct statement	s are		
	(a) (a), (c) and (d)	(b) (b) <mark>, (c)</mark> and (d)	(c) (a <mark>) and</mark> (c) on	ly (d) (b) and (d) only
179.	For trigonal bipyramid	lal coordina <mark>tion comple</mark> x (M	L5) t <mark>he corre</mark> ct <mark>p</mark> oin	group symmetry and the relative
	order of the energies o	f the 3d <mark>or</mark> b <mark>it</mark> al <mark>s in that c</mark> rys	tal f <mark>ield, resp</mark> ectively	are [NET FEB 2022]
	(a) D_{3h} ; $d_{x^2-y^2} > dz^2$, >	d _{xz} , d _{yz} (b)	$D_{3d}, d_{z^2} > d_{x^2 - y^2}, d_{xz}$	> d _{xy} , d _{yz}
	(c) D_{3d} ; $d_{x^2-y^2} > d_{z^2} >$	$d_{xy} > d_{xz}, d_{yz}$ (d)	$D_{3h}; d_{z^2} > d_{x^2 - y^2}, d_{xy}$	> d _{xz} , d _{yz}
180.	The number of CO ban	ds for isomers from sets (i)	and (ii) in their IR sp	ectra [NET FEB 2022]
	Set(i): Trigonal bipyra	midal isomers, axial-Fe(CO)	4L(A) and equatorial	-Fe(CO) ₄ L(B)
	Set(ii): Octahedral isor	ners, fac-Mo(CO) ₃ L ₃ (C) and	mer-Mo(CO) ₃ L ₃ (D) a	re
	(a) A, 4 and B, 3; C, 3 and	nd D, 2	(b) A, 4 and B, 3;	C, 2 and D, 3
	(c) A, 3 and B, 4; C, 3 and	nd D, 2	(d) A, 3 and B, 4;	C, 2 and D, 3
181.	Tge absorption spectru	um of [Cr(NH ₃) ₆] ³⁺ in water	shows two bands arc	ound 475 and 365 nm. The ground
	term and the spin-allow	wed transitions, respectivel	y, are	[NET FEB 2022]
	(a) ${}^{4}F; {}^{4}T_{1g}(F) \rightarrow {}^{4}T_{2g}a$	nd ${}^{4}T_{1g} \rightarrow {}^{4}A_{2g}$	(b) ${}^{4}F$; ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$	$_{g} \text{ and } {}^{4}A_{2g} \rightarrow {}^{4}T_{1g}(F)$
	(c) ${}^{2}\text{G}$; ${}^{2}\text{E}_{g} \rightarrow {}^{2}\text{T}_{1g}$ and 2	$E_g \rightarrow {}^2T_{2g}$	(d) ${}^{2}F; {}^{2}A_{2g} \rightarrow {}^{2}T_{2g}$	$_{g} \text{ and } {}^{2}A_{2g} \rightarrow {}^{2}T_{1g}(F)$
182.	Consider the following	molecules/ions		[NET SEP 2022]
	A. $[Mn(H_2O)_6]^{3+}$	B. $[Ni(H_2O)_6]^{2+}$	C. VCl ₄	
	The Jahn-Teller effect is	s expected for		
	(a) A and C only	(b) A only	(c) C only	(d) A and B only

183.	The electronic spectrum of an aqueous	solution of $[Ni(H_2O)_6]^{2+}$ shows three	ee distinct bands: A (~ 400nm), B (~					
	690 nm) and C (~ 1070 nm). The transi	tions assigned to A, B and C.	[NET SEP 2022]					
	(a) $T_{1g}(P) \leftarrow A_{2g}, T_{2g} \leftarrow A_{2g}$, and $T_{1g} \leftarrow$	$-A_{2g} \qquad (b) T_{1g}(P) \leftarrow A_2$	g, $T_{1g} \leftarrow A_{2g}$, and $T_{2g} \leftarrow A_{2g}$					
	(c) $T_{2g} \leftarrow A_{2g}$, $T_{1g} \leftarrow A_{2g}$, and $T_{1g}(P) \leftarrow$	$-A_{2g} \qquad (d) T_{1g} \leftarrow A_{2g}, T_{2g}$	$_{2g} \leftarrow A_{2g}$, and $T_{1g}(P) \leftarrow A_{2g}$					
184.	The Second order rate constants for the	outer sphere self-exchange electro	on transfer reactions for					
	$[Ru(NH_3)_6]^{2+}/[Ru(NH_3)_6]^{3+}$ and $[Co(NH_3)_6]^{3+}$	$[I_3)_6]^{2+}/[Co(NH_3)_6]^{3+}$ are 9.2x 10 ² M	$I^{-1} \operatorname{Sec}^{-1} \operatorname{and} \le 10^{-9} \operatorname{M}^{-1} \operatorname{Sec}^{-1},$					
	respectively. The Correct rationale for	eh above data is :	[NET SEP 2022]					
	(a) The change in the number of σ^* -ele	ectrons in Co(II)/Co(III) system.						
	(b) The change in the number of π^* -ele	ectrons in Co(II)/Co(III) system.						
	(c) The change in the number of both o	* and π^* –electrons in Co(II)/Co(II	I) system.					
	(d) The change in the number of σ^* -ele	ectrons in Ru(II)/Ru(III) system.						
185.	An octahedral d ⁶ complex has a single	spin-allowed absorption band. The	spin-only magnetic moment (B.M) and					
	the electronic transition for this comple	x, respectively, are	[NET SEP 2022]					
	(a) 0 and ${}^{1}T_{1g} \leftarrow {}^{1}A_{1g}$ (b) 4.9 and ${}^{5}T_{2}$	$_{g} \leftarrow {}^{5}E_{g}$ (c) 4.9 and ${}^{5}E_{g} \leftarrow {}^{5}T_{2g}$	(d) 0 and ${}^{1}T_{2g} \leftarrow {}^{1}A_{1g}$					
186.	In the following electron transfer reaction	ons, the one in which the bridging	ligand comes from the reductant is					
			[NET SEP 2022]					
	(a) $[IrCl_6]^{2-} + [Cr(OH_2)_6]^{2+} \rightarrow Products$	(b) [Co(NH ₃) ₅ Cl] ²⁺ +[Cr($(OH_2)_6]^{2+} \rightarrow Products$					
	(c) $[Fe(CN)_6]^{4-} + [IrCl_6]^{2-} \rightarrow Products$	(d) $[CrO_4]^{2-} + [Fe(CN)_6]^{2-}$	$^{4-} \rightarrow \text{Products}$					
187.	In the following electron transfer rea	ctions, the one in which the bridg	ging ligand comes from the reductant					
	is		[NET SEP 2022]					
	(a) $[IrCl_6]^{2-} + [Cr(OH_2)_6]^{2+} \rightarrow Products$	5						
	(b) $[Co(NH_3)_5Cl]^{2+} + [Cr(OH_2)_6]^{2+} \rightarrow P$	roducts						
	(c) $[Fe(CN)_6]^{4-} + [IrCl_6]^{2-} \rightarrow Products$							
	(d) $[CrO_4]^{2-} + [Fe(CN)_6]^{4-} \rightarrow Products$							
188.	The electronic spectrum of an aqueous solution of $[Ni(H_2O)_6]^{2+}$ shows three distinct bands: A							
	(~ 400nm), B(~ 690nm) and C(~ 1070nm). The transitions assigned to A, B and C , respectively, are							
			[NET SEP 2022]					
	(a) $T_{1g}(P) \leftarrow A_{2g}, T_{2g} \leftarrow A_{2g}, and T_{1g} \leftarrow A_{2g}$	$A_{2g} \qquad (b) T_{1g}(P) \leftarrow A_{2g}$	(b) $T_{1g}(P) \leftarrow A_{2g}$, $T_{1g} \leftarrow A_{2g}$, and $T_{2g} \leftarrow A_{2g}$					
	(c) $T_{2g} \leftarrow A_{2g}$, $T_{1g} \leftarrow A_{2g}$, and $T_{1g}(P) \leftarrow$	$A_{2g} \qquad (d) T_{1g} \leftarrow A_{2g}, T_2$	$_{g} \leftarrow A_{2g}$, and $T_{1g}(P) \leftarrow A_{2g}$					
	189. Consider the following molec	ules/ions	[NET SEP 2022]					
	A. $[Mn(H_2O)_6]^{3+}$ B. $[Ni(H_2O)_6]^2$	+ $C. VCl_4$						
	The Jahn-Teller effect is expected for							
	(a) A and C only (b) A only	(c) C only	(d) A and B only					

7880546666 7380546666

 \odot

[NET SEP 2022]

190. The Second order rate constants for the outer sphere self-exchange electron transfer reactions for $[Ru(NH_3)_6]^{2+}/[Ru(NH_3)_6]^{3+} \text{ and } [Co(NH_3)_6]^{2+} / [Co(NH_3)_6]^{3+} \text{ are } 9.2x10^2 \text{ M}^{-1}\text{Sec}^{-1} \text{ and } \le 10^{-9} \text{ M}^{-1}\text{Sec}^{-1},$

respectively. The Correct rationale for the above data is:

(a) The change in the number of σ^* -electrons in Co(II)/Co(III) system.

(b) The change in the number of π^* -electrons in Co(II)/Co(III) system.

(c) The change in the number of both σ^* and π^* – Co(II)/Co(III)system.

- (d) The change in the number of σ^* -electrons in Ru(II)/Ru(III) system.
- 191. Hydrolysis of the purple isomer of the complex [Co(tren)(NH₃)Cl]²⁺ [tren = Tris(2-aminoethyl) amine] under basic conditions results in two products. The geometry of the intermediate involved in this reaction is [NET SEP 2022]
 - (a) Trigonalbipyramidal

(c) Pentagonal planar

(b) Square pyramidal

(d) Tetrahedral

192. An octahedral d⁶ complex has a single spin-allowed absorption band. The spin-only magnetic moment (B.M.) and the electronic transition for this complex, respectively, are [NET SEP 2022] (a) 0 and ${}^{1}T_{1g} \leftarrow {}^{1}A_{1g}$ (b) 4.9 and ${}^{5}T_{2g} \leftarrow {}^{5}E_{g}$ (c) 4.9 and ${}^{5}E_{g} \leftarrow {}^{5}T_{2g}$ (d) 0 and ${}^{1}T_{2g} \leftarrow {}^{1}A_{1g}$

1. D	2. B	3. B	4. C	5. A	6. B	7. D	8. C	9. D	10. B
11. D	12. C	13. B	14. B	15. D	16. B	17. B	18. B	19. D	20. C
21. C	22. C	23. C	24. B	25. C	26. A	27. C	28. D	29. B	30. B
31. A	32. A	33. A	34. A	35. A	36. D	37. A	38. B	39. C	40. C
41. A	42. B	43. D	44. B	45. A	46. D	47. C	48. A	49. A	50. D
51. B	52. C	53. A	54. A	55. D	56. A	57. A	58. A	59. C	60. A
61. A	62. A	63. C	64. A	65. C	66. A	67. A	68. A	69. A	70. D
71. A	72. A	73. B	74. D	75. A	76. C	77. A	78. B	79. B	80. B
81. A	82. B	83. B	84. B	85. A	86. C	87. A	88. D	89. C	90. A
91. A	92. C	93. B	94. D	95. B	96. B	97. C	98. C	99. D	100. A
101. C	102. A	103. A	104. D	105. A	106. B	107. B	108. B	109. B	110. A
111. B	112. A	113. A	114. A	115. A	116. A	117. B	118. D	119. B	120. C
121. B	122. A	123. A	124. C	125. C	126. C	127. A	128. B	129. C	130. A
131. C	132. D	133. C	134. A	135. A	136. C	137. B	138. A	139. B	140. A
141. A	142. C	143. C	144. B	145. B	146. B	147. C	148. B	149. A	150. B
151. B	152. B	153. B	154. C	155. B	156. A	157. A	158. C	159. C	160. B
161. B	162. B	163. B	164. B	165. C	166. D	167. C	168. D	169. A	170. B
171. C	172. B	173. B	174. B	175. B	176. A	177. A&B	178. C	179. D	180. C
181. C	182. C	183. B	184. A	185. C	186. D	187. D	188. C	189. A	190. A
191. A	192. C								

ANSWER KEY

 \odot

SOLUTION

white needle shape crystal of trans-bis (thiourea) diaammine platinum (II) chloride

5.

(a) Ans.

Sol. In the given case ligand in same, so higher the formal oxidation state of the metal, lower will be LMCT, So, order is $MnO_4^- < CrO_4^{2-} < VO_4^{3-}$

6.

(b) Ans.

Sol.

Large reorganisation for Co⁺³ Reorganisation of Ru⁺³ less

outer sphere, so inner sphere than CO⁺², So, slower tendency to go

mush faster

inner sphere

HOMO = $\sigma^*(of Cr^{+2})$ HOMO = σ^* (of Cr⁺²)

LUMO = σ^* (of Co⁺³) LUMO = π/π^* (of Ru⁺³)

Acce; eration IS/OS = 10^{10} Acceleration IS/ $OS = 10^2$

Inner sphere mechanism is favorable for σ^* to σ^* transition only

As Cr^{+2}/Ru^{+3} has σ^* to π^* transition which is responsible for its slower acceleration in going from outer sphere mechanism to inner sphere mechanis.

7.

Ans.

Due to Jahn-Teller distrortion. Sol.

(**d**)

8.

Ans.

(c) In, Ni(CN₄)²⁻ oxidation state of Ni is +2 & its valence shell electronic configuration is $3d^8$. Since CN⁻ is a strong Sol. ligand, therefore these ligands cause to pair up two unpaired electron, resulting in vacant 3d orbital. Hybridization: dsp² geometry: Square planar.

@madchemclasses

 \bigcirc

In Ni(CL)₄ oxidation state of Ni is +2 & its valence shell electronic configuration is 3d" Since Cl is a week ligand, no pairing, none of the 3d orbital is vacant. Hybridization: Sp³ Gemoetry: tetrahedral

9.

Ans.

For a d5 octahedral complex $[Mn(H_2O)_6]^{+2}$ all transitions are Laporte forbidden (orbital forbidden) as well as spin Sol. forbidden. Absorptions associated with doubly forbidden transitions are extremely weak, so it is very lightly coloured.

10.

Ans. **(b)** Sol. 2S + 1 = 3, 2S = 2, S = 1S = 1, L = 2For term, S, P, D, F Value of L = 0, 1, 2, 3J can have values from [L+S] ... [L–S] $|2 + 1| \dots |2 - 1|$ 3 2 1 Possible J values are : 3 11.

(**d**)

Ans.

```
(d)
         N \rightarrow 1s^1 2s^2 2p^3
Sol.
         L = 1 + 0 - 1 = 0
         s = 3/2
         2s + 1 = 2x3/2 + 1 = 4
         J = (L+S) \dots (L-S)
         = |0+3/2|...|0-3/2] = 3/2
```

@madchemclasses

 \bigcirc

 $Sm^{3+} \rightarrow$ due to spin-orbital coupling Sol.

16.

Ans.

(b) $Ni(PPh_2Et)_2Br_2$; $\mu = 3.20$ Sol.

Visit On

Number of unpaired electrons = 2

Thus this complex is tetrahedral. Tetrahedral complexes show only one isomer. Magnetic moment corresponding to two unpaired electrons = 2.9 B.M. The hesh values 3.20 BM is due to spin-orbit coupling.

@Madchem Classes Chemistry

@madchemclasses \bigcirc

17. Ans. **(b)** Higher the charge and smaller size of the central metal cation increases the acidic strength of hydrated complex Sol. because it polarizes O–H band of H₂O easily. In $[Sc(H_2O)_6]^{3+}$, Sc is in +3 oxidation state and has smallest size. Therefore, in size of dipositive ions increase in the order $Ni^{2+} < Mn^{2+}$. Na⁺ has lowest oxidation state and largest size. 18. Ans. **(b)** Substitution nucleophilic unimolecular conjugate base mechanism. Sol. (i) $[Co(NH_3)_5Cl]^{+2} + OH \rightarrow [Co(NH_3)_4(NH_2)Cl]^+ + H_2O$ acid conjugate base (ii) $[Co(NH_3)_4(NH_2)Cl]^+ \xrightarrow{slow step} [Co(NH_3)_4(NH_2)]^{+2} + Cl^-$ (iii) $[Co(NH_3)_4(NH_2)]^{2+} + H_2O \rightarrow [Co(NH_3)_5(OH)]^{+2}$ 19. (**d**) Ans. Sol. d_{7}^{2} Energy $\mathbf{d}_{\mathbf{x}\mathbf{z}}$ d_{yz} 20. Ans. (c) $[\operatorname{Co}^*(\operatorname{NH}_3)_6]^{2+} \to \operatorname{HS};$ Sol. $[Co^*(NH_3)_6]^{3+} \rightarrow Low spin$ $[\operatorname{Ru}(\operatorname{NH}_3)_6]^{2+} \rightarrow \operatorname{Low} \operatorname{spin}; [\operatorname{Ru}^*(\operatorname{NH}_3)_6]^{3+} \rightarrow \operatorname{Low} \operatorname{spin}$ 21. Ans. (c) Ligand Cl⁻ is both σ -donor \rightarrow and π donor \rightarrow Sol. According to LFT, each ligand is always σ -donor some ligands like: NH3 which has only one lone pair of electrons is only σ -donor. Some ligands like F⁻, C⁻, OH⁻ etc which hence two or more lone pair of electrons are σ -as well as π donors Some ligands like CO, CN⁻, SH₄ bpy, phen etc how vacant π^* - orbitals so these are σ donor but π -acceptors. 22. Ans. (c) We know that number of microstates = $\frac{n!}{r!(n-r)!}$ Sol. For d^5 , r = 5, l = 2Therefore, $n = 2(2l+1) = 2(2 \times 2 + 1) = 10$ Number of microstates $=\frac{10!}{5!5!} = 252 = 7 \times 6^2$ 23. Ans. (c) Sol. Spin-orbit coupling of d-electrons takes place in which t_{2g} orbitals are unsymmetrically filled. 24.

@madchemclasses @_____@Madchemclasses

Ans. (b)

Sol. For Ni⁺² ion in free state, the thus having same spin multiplicity as ³F and ³P. In octahedral field, 3F splits into ${}^{3}A_{2g}$, ${}^{3}T_{2g}$ and ${}^{3}T_{1g}$ terms but ³P does not split but it transforms into ${}^{3}T_{1g}(P)$. Therefore orgel diagram is.

Ans.

(**d**) $C_3^{-2} = \text{In FCC}$ arrangement (Lattice point at corner + at each face centre) Therefore, coordination number of $\text{Be}^+ = 4$ And coordination number of $C_3^{-2} = 8$ In Be₂C₃, Be⁺ = In tetrahedral voids Sol.

29. Ans.

30. Ans. Sol.

@madchemclasses

 \odot

31.

Ans. Co_3O_4 is a normal spinel. In normal spinel the Co^{2+} ions occupy tetrahedral voids and Co^{3+} ions occupy octahedral Sol. voids. Therefore, spinel structure of Co_3O_4 is $(Co^{2+})_t(2Co^{3+})_0O_{4-}$

32.

Ans.

(a)

(a)

(a)

In trigonal bipyramidal complexes, the two ligands lie on z-axis and the three in xy plane somewhere in between Sol. the axes. In xy plane, there are four electrons and on z-axis there is only one electron in d_z^2 orbital (Electronic Configuration, $d_{xz}^2 = \frac{d_{yz}^2}{d_{yz}^2} < d_{xy}^2 = \frac{d_{x^2-y^2}^2}{d_{z}^2} < d_{z}^1$

33.

Ans.

(a) Sol. Trans effect of $Cl > NH_3$ Anti-tumour agent is cis-[Pt(NH₃)₂Cl] The precursor of this complex is $[PtCl_4]^2$

$$\begin{bmatrix} CI \\ CI \\ CI \end{bmatrix} \xrightarrow{Pt} \begin{bmatrix} CI \\ HI_3 \\ CI \\ CI \end{bmatrix} \xrightarrow{Pt} \begin{bmatrix} CI \\ HI_3 \\ CI \\ HI_3 \\ CI \\ HI_3 \end{bmatrix} \xrightarrow{Pt} \begin{bmatrix} CI \\ HI_3 \\ CI \\ HI_3 \\ HI_3 \\ HI_3 \end{bmatrix}$$

34.

Ans.

When $Fe(NO_3)_3$. $9H_2O$ is dissolved in water, the complex ion $[Fe(H_2O)_6]^{3+}$ is formed. Sol.

35.

Ans.

The rate of water exchange in $[Cu(H_2O)_6]^{2+}$ is fastest due to Jahn-Teller distortion. For other three Sol. complexes of 3d-series dipositive metal cation. The rate of water exchange decreases with increase in effective nuclear charge and decrease in size.

36.
Ans.

ns	5.	(d)						
		VisitOn madchemclasses.online	f	@madchemclasses	@Madchem Classes Chemistry	0	@madchemclasses	7880546666 7380546666

39.

Ans.

(c)

Sol. The mulliken symbols for the spectroscopic state arising from free ion term F are

$NEt_3 < C_2H_4 < C_2F_4 < CO$

Where, NEt₃ = Neither π -donor nor π -acceptor

 $C_2H_4 < C_2F_4 < CO$ = Increasing order of π -acceptor ability (on the bases of LET)

44. Ans. Sol.	(b) Intensity of $C({}^{4}A_{2g} \rightarrow -E_{g})$ is lowest, since it is spin forbidden.
45. Ans. Sol.	(a) From spectro chemical series order, Br- < Cl-< NCS- Order of Δ_t
	$[Co(NCS)_4]^{-2} > [CoCl_4]^{-2} > [CO(Br_4)]^{-2}$
46. Ans. Sol. 47. Ans.	(d) +3 -3 FeCl ₃ .6H ₂ O + $+4-2-2+3-3 +4-4 +1-1$ SOCl ₂ \longrightarrow FeCl ₃ (s) + SO ₂ (g) + HCl(g) (c)
Sol.	$[Fe(H_2O)_6]^{2+} < [Fe(H_2O)_6]^{3+} < [Al(H_2O)_6]^{3+}$ Reference – Shriver Atkin (P.No. 123 → Bronsted acid base concept)
48. Ans. Sol. 49.	(a) $Co^{2^+} \rightarrow t_{2g}^5 e_g^2$
Ans. Sol.	(a) Catalase is a tetramer of four polypeptide chains covering 500 amino acids.
-	It works as $H_2O_2 + Fe(III) - E \rightarrow H_2O + O = Fe(IV) - E^{+0}$ $H_2O_2 + O = Fe(IV) - E^+ \rightarrow H_2O + Fe(III) - E + O_2$ The colour arises as Fe(III) changes into Fe(IV)
50. Ans. Sol.	(d) $Mn^{2+} \rightarrow 3d^5 \rightarrow t^3_{2g} e^2_g$ (high spin octahedral) CFSE in Oh field = $(-0.4 \times 3 + 0.6 \times 2) = 0$
	$\operatorname{Cr}^{3*} \to \operatorname{3d}^3 \to t_{2g}^3 e_g^0$ (octahedral)
	CFSE in octahedral field. = $-0.4 \times 3\Delta_0$ = $-(0.4 \times 3) \Delta_0$ = $-1.2 \Delta_0$
51. Ans.	(b)

Sol.

@madchemclasses

 \triangleright

 \odot

52.

Ans.

(c)

Sol. Pt–S $\rightarrow d\pi$ – $d\pi$ bonding in weaker than that of Pt–P bonding. When Pt–S and Pt–P bond are trans to each other then Pt–S become weaker therefore in such a situation SCN ligand tends to form bonding through M atoms of ligand as M do not form $d\pi$ – $p\pi$ bonding. Hence, the most probable structure will be

55.

Ans.

Sol. For np² configurations (microstates)

(**d**)

Hence, dimagentic in nature.

The configuration (IV) violets the Pauli's Principle, Hence term symbol ³D is not possible.

56. Ans.

Visit On

ww.madchemclasses.online

Ans. (a)
 Sol. S and p both form π-bonding with complex and π-bonding capacity of sulphur is greater than phosphorus due to smaller size of d-orbital of sulphur. Hence, in presence of sulphur trans to phosphours donor atom phosphours – metal bond will be weak hence they do not lie trans to each other in the complex. As nitrogen does not involment in π-bonding with complex hence when nitrogen atom is trans to phosphours, phosphorus become able to form efficient π-bond with metal hence become stable thats why P and N are trans to each other

@Madchem Classes Chemistry

@madchemclasses

0

7880546666

7380546666

 \bigcirc

@madchemclasses

(A) and (B) are polytopal isomers.

58.

Ans. (a) Sol. $[CoL_6]^{3+} \rightarrow red colour \rightarrow absorbs green radiations.$ $[CoL'_6]^{3+} \rightarrow green colour \rightarrow absorbs red radiations.$ Energy of green radiations > energy of red radiations.

Therefore, L will be stronger ligand and than L'. Thus, L and L' are NH₃ and H₂O respectively.

59. Ans.

Ans. (c) Sol. A maximum five 'd' orbitals can from bonding with each other

M

$$\sigma \text{ bonds} \implies 1$$

$$\pi \text{ bonds} \implies 2$$

$$\delta \text{ bonds} \implies 2$$

Firstly reported in 2007 in chromium complexes.

[Ar—Cr<u></u>Cr—Ar]

(a)

Ar = Substituted aromatic rings.

60. Ans.

Ans. Sol.

$$V_1 = {}^{3}T_{1g}(F) \rightarrow {}^{3}T_{2g}(F); V_2 = {}^{3}T_{1g}(F) \rightarrow {}^{3}T_{1g}(P)$$

@madchemclasses

Sol.

@madchemclasses

 \odot

Ground state term for d⁵ is ⁶S which transform into ⁶A_{1g} in octahedral field.

There is spin change during electron transition. Therefore, transition is spin disallowed.

67. Ans. (a) Sol. $[Co(NH_3)_5Cl]^{2+} + OH^- \rightleftharpoons [Co(NH_3)_4(NH_2)Cl]^+ + H_2O$ $[Co(NH_3)_4(NH_2)Cl]^+ \rightarrow [Co(NH_3)_4(NH_2)]^{2+} + Cl^-$

 $[\operatorname{Co}(\operatorname{NH}_3)_4(\operatorname{NH}_2)]^{2+} + \operatorname{OH}^- \rightarrow [\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{OH}]^{2+}$

Base hydrolysis of $[Co(NH_3)_5Cl]^{2+}$ depends on the concentration of both $[Co(NH_3)_5Cl]^{2-}$ and base. In this reaction OH– abstract proton from coordinated NH₃.

The base hydrolysis of $[Co(CN)_6]^{3-}$ is independent of base because it has no ionizable proton.

68. Ans. (a) Sol. $[MnF_6]^{3-}$, $Mn^{3+} \rightarrow 3d^4 \rightarrow t_{2g}^3 eg^1$ (HS) $\mu = \sqrt{4(4+2)} = \sqrt{24} = 4.9$

Sol. It is first inorganic optically active compound discovered by Werner.

Visit On

 \odot

$$\begin{array}{c|c} +1 & 0 & -1 \\ \hline & & \\ \hline & & \\ 2s+1 = 2 \times \frac{1}{2} + 1 = 2 \\ J = |1+s|...|1-s| \\ = |1+1/2|...|1-1/2| \\ = 3/2 & 1/2 \\ Term \ symbol \ ^2P_{3/2} \qquad \ ^2P_{1/2} \end{array}$$

80.

Ans. (b) Sol. ${}^{3}F \rightarrow {}^{3}D$

 $F \rightarrow D$ Since, for allowed transition (atomic), $\Delta S = 0$, $\Delta L = 0$, ± 1 In option a and c spin multiplicity is not same therefore incorrect In option d, $\Delta L = 2$ therefore incorrect.

81.

```
Ans. (a)
Sol. Taking the valence shell configuration
Be 2s^1 3s^1
s = 1/2 + 1/2 = 1
Multiplicity = 2S + 1 = 2x 1 + 1 = 3
L = 0 + 0 = 0, S term
J = (L+S) = (0+1) = 1
Hence, terms is {}^{3}S_{1}
```

82.

Ans.

Sol. Chelate effect is predominately due to entropy change

$$[Co(NH_3)_6]^{3+} + 3en = [Co(en)_3]^{3+} + 6NH_3$$

en

 $\frac{1}{2}$

(b)

 ΔH nearly same but entropy change is more.

83. Ans.

Ans. (b)
Sol. For
$$[1s^2 2s2p^6 3p^1]$$

 $+1 0 -1$
 $2s + 1 = 2 \times \frac{1}{2} + 1 = 2$
 $J = |1+s|...|1-s|$
 $= |1+1/2|...|1-1/2|$
 $= 3/2 1/2$
Term symbol ${}^2P_{3/2} {}^2P_{1/2}$

84.

Ans. (b)

```
Sol. {}^{3}F \rightarrow {}^{3}D
```

Since, for allowed transition (atomic), $\Delta S = 0$, $\Delta L = 0$, ± 1 In option a and c spin multiplicity is not same therefore incorrect

0

In option d, $\Delta L = 2$ therefore incorrect.

85.

Ans.

Sol. $\operatorname{Cr} O_4^{2-} < MnO_4^{2-} < FeO_4^{2-}$

(a)

(c)

All have +6 oxidation state but due to smaller size on going from Cr to Fe. Fe has very high charge density. Hence, it has very high tendency to accept electron. Hence, strongest oxidising agent.

Ans. Sol.

Number of unpaired electrons (A) $[CoF_6]^{3-} \Rightarrow d^6(high spin) \approx t_{2g}^4 e_g^2$ (B) $[IrCl_6]^{3-} \Rightarrow d^6(high spin) \approx t_{2g}^6 e_g^0$ (C) $[Fe(H_2O)_6]^{2+} \Rightarrow d^6(high spin) \approx t_{2g}^4 e_g^2$ Since A and C has same number of unpaired electron. Hence, they have same

Since, A and C has same number of unpaired electron. Hence, they have same magnetic moment. As A and C are 3d-block metal with weak ligand. Hence, they are high spin while Ir being 5d-metal is low spin. Because 5d greater splitting power than 3d.

87.

Ans. (a) Sol. $[Mn(H_2O)_6]^{2+} = d^5 (H.S)$

As all the levels are electronically non-degenerate. Hence, No Jahn–Teller distortion. Therefore, all the Mn–O bond length will be equal.

88. Ans.	(d)		
o9. Ans.	(c)		
Sol.	E_1 $O(2p)$	E ₂ Re(6d)	
		- O(2p)	

 $E_2 > E_1$ hence, energy required for transfer of electron from oxygen to Re falls in UV region. Hence, Re O_4^- colourless while in Mn O_4^- due to less energy difference it falls in visible region. Hence, Mn O_4^- coloured. Also as Both Mn and Fe Have +7 oxidation state i.e. they have no d-electron hence. no d- d transition and colour arises due to LMCT.

90.

Ans. (a) Sol. $[Co(CN)_5Cl]^{3-} + OH^- \rightarrow [Co(CN)_5(OH)]^{3-} + Cl^-$ Visit On www.madchemclasses.online **f** @madchemclasses **b** @Madchem Classes Chemistry **o** @madchemclasses **b** 7880546666 7380546666 The reaction proceed through dissociative pathway and rate is dependent only concentration of sub strates. As substate do not have acidic hydrogen. Hence, it does not undergo S_N1 CB mechanism.

$$[Co(CN)_{5}Cl]^{3-} \xrightarrow{slow} [Co(CN)_{5}]^{2-} + Cl^{-} \xrightarrow{OH^{-}} [Co(CN)_{5}OH]^{3-}$$
91.
Ans.
(a)
(III)
(II)

inert due to stable (d³ state)

92.

91.

Ans.

(c)

Sol. Tanabe-Sugano are useful in interpretation of spectra of both high spin and low spin complexes of d^2-d^8 metal cation.

In Tanabe-Sugano, the energy of excited sate (expressed as E/B) are plotted against ligand field strength (expressed as (Δ_0/B) .

Zero energy is taken for the lowest term and also two form of same symmetry never cross each other and they bent for apart from each other due to repulsion.

 \odot

= ground state = ${}^{4}F$

First exited state = ${}^{4}P$

$${}^{4}A_{2g} \rightarrow {}^{4}T_{2g} (\Delta_0)$$

 $v_1 \approx 14900 \text{ cm}^{-1}$; $v_2 = 22700 \text{ cm}^{-1}$; $v_3 = 34400 \text{ cm}^{-1}$

Since, ${}^{4}T_{1g}(p)$ and ${}^{4}T_{1g}(F)$ have no fix energy therefore, they will not provide accurate value of Δ_{0} . Thus, energy difference between ${}^{4}A_{2g} \rightarrow {}^{4}T_{2g} \approx 14900 \text{ cm}^{-1}$ will be correspond to Δ_{0} .

94. Ans.

Sol.

 $\left[\begin{array}{c} II\\ Ni \ L_6 \end{array}\right]^{n^+ \ or \ n^-}$ has absorption bonds at 8500, 15400, 26000 cm^{-1}

 $\begin{bmatrix} II \\ Ni L_6^1 \end{bmatrix}^{n^+ \text{ or } n^-}$

(**d**)

at 10750, 17500 and 28200 cm⁻¹

as for first complex absorptions bonds are at low energy i.e. it has weak splitting therefore, it has weak ligand and for IInd complex high energy absorption bonds corresponds to strong logand. thus, L is weak and L¹ strong ligand.

95.

Ans. **(b)** Number of microstate in ${}^{3}F$ is calculated as (2S +1) (2L+1) Sol. For F, L = 3

Hence, (3) $(2 \times 3 + 1) = 21$

(b)

96.

Ans.

Sol.

 $L = \Sigma M_L = 5 - 3 = 2 = D$

Visit On

S = 2 2S + 1 = 5Hence, lowest energy form = ${}^{5}D$

(c)

97. Ans.

Sol.

As Phosphorescence is spin-forbidden transition and also occurs when electron comes from excited to ground tstae. Hence, transition ${}^{4}A_{2g} \leftarrow {}^{2}E_{g}$ is responsible for the phosphorescence.

98.

Ans. (c) Sol. For orbital contribution the t_{2g} set should be unsymmetrically filled $[Cu(H_2O)_6]^{2+} \rightarrow t_{2g}^6 e_q^3 \rightarrow No$ contribution

(**d**)

Visit On

.madchemclasses.online

 $[Ni(H_2O)_6]^{2+} \rightarrow t_{2g}^6 e_g^2 \rightarrow No \text{ contribution}$

$$[Co(H_2O)_6]^{2+} \rightarrow t_{2g}^5 e_g^2 \rightarrow Orbital contribution$$

$$[Cr(H_2O)_6]^{2+} \rightarrow t_{2g}^3 e_g^1 \rightarrow No \text{ contribution}$$

99.

Ans.

Sol. In KMnO₄ all the electrons are paired. However, its paramagnetic susceptibility of the order of 10⁻⁶ cm³ mol⁻¹ is due to the temperature independent paramagnetism.

100.

101.

Ans. (a)

Sol. The complexes having T ground state have orbital contribution to magnetic moment however for complex having A or E ground state some time μeff is slightly greater than μspin is due to mixing of first excited state T (having same spin multiplicity to ground state) mixes with A or E due to spin coupling and there μeff is calculated by

$$\mu_{eff} = \mu_{spin} \left(1 - \frac{\alpha \lambda}{A}\right)$$

$$(1 - \frac{\alpha \lambda}{A})$$

@Madchem Classes Chemistry

@madchemclasses

7880546666

7380546666

 \bigcirc

@madchemclasses

Ans. (c) $[FeO_4]^{-4} \rightarrow Jahn$ –Teller distorted away from the ideal tetrahedral towards a flattered structure Sol.

$$Fe^{4+} \longrightarrow 1 1 1 1$$

(a)

(a)

it is paramagnetic due to unpaired electron D_{2d} symmetry

102.

- Ans.
- In halogen molecules, the $\pi^* \rightarrow \sigma^*$ transitions are responsible for their colours as evident from the Sol. following figure

103.

Ans.

Sol. The π -donor ligands such as Cl⁻, Br⁻, I⁻, N-bonded NCS⁻ etc stabilize the TBP intermediate and favour the stereochemical change. The trans-forms tendency to isomers in the order $A = NO_2^- < Cl^- < NCS^- < OH^-$

104.

Ans.

(**d**) According to Nephelauxetic series Sol. $F^- > H_2O > NH_3 > en > NCS^- > Cl^- \sim CN^- > Br^-$

The highest value of β is for F-

105.

Ans.

The ${}^{2}E_{g} \leftarrow {}^{4}A_{2g}$ transition in the electronic spectrum of $[Cr(NH_{3})_{6}]^{3+}$ occurs nearly at 650 nm. Sol.

106.

Ans.

 $[Mn(H_2O)_6]^{2+} \rightarrow H_2O$ is a weak ligand, No pairing occurs. Sol.

$$Mn^{2+} \longrightarrow \boxed{\begin{array}{c} 1 \\ +2 \end{array}} \begin{array}{c} 1 \\ +2 \end{array} \begin{array}{c} 1 \\ -1 \end{array} \begin{array}{c} 1 \\ -1 \end{array} \begin{array}{c} 1 \\ -1 \end{array} \begin{array}{c} 1 \\ -2 \end{array}$$

S = 5.2S + 1 = 6

(a)

(b)

 $L = 0 \rightarrow 5 Term$

 \therefore Ground state term \rightarrow 6S

0

....(i)

...(ii)

 $L = 3 \rightarrow F Term$

$$S = \frac{3}{2}2S + 1 = 2 \times \frac{3}{2} + 1 = 4$$

Ground state term $\rightarrow {}^4F$

$$Cu^{2+} \longrightarrow \boxed{\begin{array}{c} 4 \\ +2 \end{array}} \xrightarrow{\begin{array}{c} 4 \\ -1 \end{array}} \xrightarrow{\begin{array}{c} 4 \\ -1 \end{array}} \xrightarrow{\begin{array}{c} 4 \\ -2 \end{array}}$$
$$L = \Sigma |M_L| = 2 \rightarrow D$$
$$S = \frac{1}{2}, 2S + 1 = 2$$

Ground state term \rightarrow ²D

107.

```
Ans. (b)
Sol. [CO(NH_3)_5Cl]^{2+} + OH^- \rightleftharpoons [CO(NH_3)_4(NH_2)Cl]^+ + H_2O
[CO(NH_3)_4(NH_2)Cl]^+ \rightarrow [CO(NH_3)_4(NH_2)]^{2+} + Cl^-
[CO(NH_3)_4(NH_2)]^{2+} HOH \rightarrow [CO(NH_3)_5(OH)]^{2+}
```

108.

- Ans. (b)
- **Sol.** Heme A \rightarrow Iron porphyrin \rightarrow Colour due to $\pi \pi^*$ water splitting enzyme contains transition 0×0 bridged Mn₄ cluster

$$[Mn(H_2O]_6]^{2+} \rightarrow 3d^5$$

$$(Mn(H_2O]_6)^{2+} \rightarrow 3d^5$$

$$(Mn(H_2O)_6)^{2+} \rightarrow 3d^5$$

 $[Cr(H_2O)_6]^{2+} \rightarrow t^3_{2g} \text{ eg}^1 \rightarrow \text{Tetragonal elongation.}$

109. **(b)** Ans. $k_{12} = (k_{11} \text{ K } k_{22} f)^{1/2} = (5 \times 4 \times 10^3 \times 2 \times 10^8 \times 1.0)^{1/2} = 20 \times 10^5 = 2.0 \times 10^6$ Sol. 110. (a) Ans. Sol. $NR \rightarrow Dithiocarbamate$ $OR \rightarrow Xanthate$ $O \rightarrow Dithiocarbonate$ $SR \rightarrow Thioxanthate$ 111. Ans. **(b)** $\mu eff = \mu s \left(1 - \frac{\lambda \alpha}{\Lambda} \right)$ Sol. $\Delta = \frac{1}{\lambda} = \frac{1}{625} \times 10^{-7} \text{ cm} = \frac{10^{-7}}{625} \text{ cm}^{-1}$ For Cu⁺² \rightarrow Term is ²D, hence, $\alpha = 2, \lambda = -625 \text{ cm}^{-1}$ $\mu_{\text{eff}} = 1.73 \left(1 - \frac{2 \times 625 \times 625}{10^7}\right) = 1.73 \left(1 + \frac{2 \times 625 \times 625}{10^7}\right)$ $1.73 \left(1 + \frac{2 \times 625 \times 625}{10^7}\right) = 1.73 \{1+0.078\} = 1.73 \{1.078\} = 1.864$ @Madchem Classes Chemistry Visit On @madchemclasses @madchemclasses 7880546666 \bigcirc www.madchemclasses.online 7380546666

7880546666 7380546666

 \odot

@madchemclasses

 $\mu_{eff}=1.864$

Visit On www.madchemclasses.online

f

112. Ans. Sol. 113. Ans. Sol.	(a) In CdS, HgS and Bil ₃ colour is due to LMCT Cd ²⁺ and Hg ²⁺ has d ¹⁰ configuration. Hence, no d-d transition. Also, MLCT as ligand is not π -acceptor. Hence, correct option (a). (a) (a) Change in CFSE on going for O _h to five coordinate intermediate for ions is as follows. V ² (d ³) = -2.00
	$Cr^{3+}(d^3) = -2.00$
	$Ni^{2+}(d^8) = -2.00$
114. Ans. Sol.	(a) $[\bar{C}r(ox)_3]^{3-}$ and $[\bar{C}r(en)_3]^{3+}$ will show optical isomer. As t_{2g} level is electronically non-degenerate. Hence, there will be no Jahn-Teller distortion.
115. Ans. Sol.	(a) In $[FeS_2CNEt_2]_3$] oxidation state of Fe = +3
	$Fe^{3+} (low spin) 4 \atop 4 \atop 2 \atop $
116. Ans. Sol.	(a) $(A)[Ni(H_2O)_6](NO_3)_2 < (B)[Ni(NH_3)_6](NO_3)_2 < (C)[Ni(en)_3](NO_3)_2 A_0 increases Thus, order for energy absorition is 675 (A) < 615 (B) < 565(C) Complementary colour of blue \rightarrow Orange, green \rightarrow Red, Violet \rightarrow YellowEnergy order for absorbed light is, yellow > orange > redThus, A absorbs red hence it is greenB absorbs orange hence it is blueC absorbs yellow hence it is violetThus correct Option is (a)$
117. Ans. Sol.	(b) In I_3^- there is interaction between σ^* a of I ₂ non-bonding electron of I ⁻ . In case propanone and Br ₂ there in interaction between σ^* of Br ₂ and non-bonding electron of propanone. Thus, both I ₂ and Br ₂ behave as acid.

118.
Sol. (d)
(A)
$$[TIF_6]^{3^2}$$

 $TI \Rightarrow 3d^2 4s^2$ d'
 $TI^{3^+} = 3d^1 4s^0$
(B) $CrF_6^{3^-}$
 $Cr \Rightarrow 3d^5 4s^1$
 $Cr^{-12} \Rightarrow 3d^2 4s^2$
(C) $[MIF_6]^{3^2}$
 $Mn = 3d^5 4s^2$
 $Mn^{4^3} = 3d^4$
(D) $CoF_6^{3^-}$
 $Co^{-3} = 3d^6 4s^0$
(D) CoF_6^{-3}
 $Co^{-3} = 3d^6 4s^0$
(D) CoF_6^{-3}
(D) CoF_6^{-3}
(D) CoF_6^{-3}
(D) CoF_6^{-3}
(D) CoF_6^{-3}
(D) CoF_6^{-3}
(D) C

 $^1A_{1g}\!\rightarrow {}^1T_{2g}$

there are additional spin allowed transitions at higher energy but they are marked by allowed transitions. Hence, are not observed.

@madchemclasses

 \bigcirc

7880546666

7380546666

7380546666

 $1s^1$ $2s^1$ S = 1/2 + 1/2 = 1 $2S + 1 = 2 \times 1 + 1 = 3$ J = |1+s|...|1-s| = |1+0|...|1-0| = 1 $1 = 0 \rightarrow S$ (term) ${}^{3}S_{1}$ 126. Ans. (c) Sol. For allowed transition: a) Spin multiplicity should be same or $\Delta S = 0$ b) $\Delta L = 0, \pm 1$, for allowed transition Therefore (4) is not allowed as $\Delta L \neq 0, \pm 1$ c) $u \rightarrow g$ (allowed) $g \rightarrow g$ (not allowed) Therefore (1, 2) are not allowed $[+ \rightarrow \bullet] \rightarrow$ forbidden so, therefore (1, 2) are not allowed $[+ \rightarrow +] \rightarrow allowed$ 127. Ans. **(a)** Sol. Ο C OC CH_2 CH₂ CH_2 r /IQ CH₂ CH_2 OC ĊH₂ Ω 128. Ans. (b) Sol. No. of unpaired electron = 2 $Ni^{2+}(3d^8)$ $\mu_{s} = 2.9 \text{ B.M.}$ No orbital contribution t₂ No. of unpaired electron = 2 $Ni^{2+}(Td)$ $\mu_{\rm s} = 4.1$ B.M. @Madchem Classes Chemistry Visit On @madchemclasses @madchemclasses 7880546666 \bigcirc

High value (4.1 B.M.) is due to μ_{spin} + orbital contribution because t_2 is electronically degenerate.

129.

Ans. (c) Sol. CrO_4^{2-} MoO_4^{2-} $Cr^{2-} \rightarrow 3d^0 4s^0 Mo^{6+} \rightarrow 4d^0 5s^0$

 $0^{2-} \rightarrow 2s^2 2p^6$

(a)

in both Cr⁶⁺ and Mo⁶⁺ ions, there is no d-electrons, therefore, there is no d-d transition, since in both the ions. Oxidation state is very high. there is LMCT in both cases. The energy gap between $2p^*(O^{2-})$ and $3d^0$ (Cr⁶⁺) is less than that between $2p^6$ (O²⁻) and $4d^0$ (Mo⁶⁺). Thus, LMCT energy in CrO₄²⁻ is less (high λ_{max}) than that of MoO₄²⁻ (low λ_{max}).

130. Ans.

Sol.

Trans effect of Cl- > NH₃

In blood it stays in equilibrium with cis – [Pt(NH₃)₂ Cl(H₂O)]⁺

In DNA stand, cis – platin binds to two adjacent guanin bases [Not to cytosine bases]

(A) Because of high nuclear charge of Cr is greater than that of V, Cr has higher. Thus ionization energy than V. Hence, Cr²⁺ is not easier to oxidized than V²⁺ in gas phase. Thus, option(a) is incorrect.

(B)
$$Cr^{2+}(aq) \rightarrow [Cr(H_2O)_6]^{2+} \rightarrow [Cr(H_2O)_6]^{3+} + e^{-}$$

Thus V²⁺ (aq) does not easily oxidized

Thus, Cr²⁺(aq) is more powerful reducing agent than V²⁺ (aq)

(C) Cr^{2+} (aq) is more labile than V2+ (aq). Also, Cr^{2+} belongs to class 1 metals and V²⁺ belongs to class 3 metals. Thus, the rate of water exchange in Cr^{2+} (aq) is faster than V²⁺ (aq)

132. Ans. (d) Sol. (l) $[Fe(CN)_6]^{3-} + [Co(CN)_5]^{3-} \rightarrow [(NC)_5Fe-CN-Co(CN)_5]^{6-}$ $\xrightarrow{electron transfer} [Fe(CN)_6]^{4-} + [Co(CN)_5(OH_2)]^{2-}$ (inner sphere mechanism) (II) $[Co(bipy)_3]^{2+} + [Co(bipy)_3]^{3+} \rightarrow [Co(bipy)_3]^{3+} + [Co(bipy)_3]^{2+}$ (outer sphere mechanism) (III) $[Co(NH_3)_5F]^{2+} + [Cr(H_2O)_6]^{2+} \xrightarrow{-H_2O} [H_3N)_5 Co-F-Cr(OH_2)_5]^{4+} \xrightarrow{E.T.}$ $[H_3N)_5C_0^{-}F-Cr(OH_2)_5]^{4+} \xrightarrow{+H_2O} [Co(NH_3)_5(OH)_2]^{2+} + [Cr(OH_2)_5F]^{2+}$ (Inner sphere mechanism)

Marcus equation is applicable only for cross-outer sphere reactions.

(B) is a self exchange reaction, its rate of electron transfer can be calculated experimentally. No need to apply marcus equation. (Reference basic inorganic chemistry by F. Albert cotton, G. Wilkinson and Paul L. Galls) third eddition.

100	In this equation only (d) statement is correct.		
133. Ans.	(c)		
Sol.	$[Co(NCS)(NH_3)_5]^{2+} + [Fe(H_2O)_6]^{2+} \xrightarrow{-H_2O} [(NH)_5 \text{ Co-SCN-Fe}(H_2O)_5]^{4+} \xrightarrow{\text{transfer}} [(HN)_5 \text{Co-SCN-Fe}(H_2O)_5]^{4+} \xrightarrow{H_2O} [Fe(SCN)(H_2O)_5]^{2+} + [Co(NH_3)_5(H_2O)]^{2+} (Intermediate)$		
	$[\operatorname{Co}(\operatorname{NH}_3)_5(\operatorname{H}_2\operatorname{O})]^{2+} \xrightarrow{+5H_3O^+} [\operatorname{Co}(\operatorname{H}_2\operatorname{O})_6]^{2+} + 5\operatorname{NH}_4^+$		
	$[Fe(SCN)(H_2O)_5]^{2+} H_2O \rightarrow [Fe(H_2O)_6]^{3+} + SCN^{-}$		
	(Intermediate)		
134. Ans. Sol.	(a) For strong Jahn-Teller distortion e_g orbitals must be assymetrical filled. (a) $t_{2g}^6 e_g^1, t_{2g}^3 e_g^1, t_{2g}^6 e_g^3$		
135. Ans. Sol.	(a) The correct order of intensity of d-d transitions in the complexes follows order cis $[M(H_2O)_4Cl_2] > trans [M(H_2O)_4Cl_2] > [M(H_2O)_6]^{2+}$		
136. Ans. Sol.	(c)		

 \triangleright

f

Sol. An aqueous solution of Fe(III) ion (A) gives a blood-red colour on reaction with KSCN the blood red colour is due to formation of $[Fe(SCN)(H_2O)_5]^{+2}$ (B). The colour may also used for the identification of iron (III). This colour is destroyed by the addition of F– ion due to the formation of $[FeF_6]^{-3}$ (C).

$$[Fe(H_2O)_6]^{+3} + SCN^- \rightarrow [Fe(SCN)(H_2O)_5]^{+2} \xrightarrow{\text{NaF}} [FeF_6]^{-3}$$
(A)
(B)
(C)
Blood red colour
Due to LMCT
(a)
(a)

137. Ans.

Sol. 138. Ans.

Sol.

139. Ans.

140. Ans.

Visit On

ww.madchemclasses.online

@madchemclasses

- **Sol.** Electron transfer reactions by self-exchange electron transfer is fast when HOMO is π^* and LUMO is also π^* i.e. electron transfer is from π^* of reductant to the π^* of oxidant.
 - $[Ru(NH_3)_6]^{2+} + [Ru(NH_3)_6]^{3+} +$ (a) $(\pi^*)^6 (\sigma^*)^0 \qquad (\pi^*)^5 (\sigma^*)^0 \qquad \rightleftharpoons [Ru(NH_3)_6]^{3+} + [Ru(NH_3)_6]^{2+}$ Reaction is fast $HOMO = (\pi^*)^6 \quad LUMO = (\pi^*)^5$ $[Co(NH_3)_6]^{2+} + [Co(NH_3)_6]^{3+}$
 - (b) $(\pi^*)^5 (\sigma^*)^2 \quad (\pi^*)^5 (\sigma^*)^0 \rightleftharpoons [Co(NH_3)_6]^{3+} + [Co(NH_3)_6]^{2+}$ Reaction is slow $HOMO = (\pi^*)^5 \ LUMO = (\sigma^*)^0 \\ [Cr(H_2O)_6]^{2+} + \ [Cr(H_2O)_6]^{3+}$
 - (c) $(\pi^*)^3 (\sigma^*)^1 \qquad (\pi^*)^3 (\sigma^*)^0 \rightleftharpoons [Cr(H_2O)_6]^{3+} + [Cr(H_2O)_6]^{2+}$ Reaction is slow $HOMO = (\sigma^*)^1 LUMO = (\sigma^*)^0$ $[Fe(H_2O)_6]^{2+} + [Fe(H_2O)_6]^{3+} +$

```
(d) (\pi^*)^4 (\sigma^*)^2 (\pi^*)^3 (\sigma^*)^2 \rightleftharpoons [Fe(H_2O)_6]^{3+} + [Fe(H_2O)_6]^{2+} Reaction is fast
HOMO = (\pi^*)^4 LUMO = (\pi^*)^3
```

Both reactions (a) and (d) are fast but reaction (a) is much faster than (d) because there is small change in M–L bond length in reaction (a) i.e. less activation energy is equired

141. Ans.

Ans.(a)Sol.Selection rule for atomic transition:

 $\Delta S = 0$; $\Delta L = 0, \pm 1$; $\Delta J = 0, \pm 1$ ($J = 0 \rightarrow J = 0$ is not allowed) (a) ${}^{3}F_{4} \rightarrow {}^{3}D_{3}$ So, $\Delta S = 0$; $\Delta L = -1$; $\Delta J = -1$ (allowed transition) S=1 S=1 L=3 L=2 I=3 I=4 (b) ${}^{3}F_{4} \rightarrow {}^{1}D_{3}$ So, $\Delta S = -1$; $\Delta L = -1$; $\Delta J = -1$ (not allowed transition) S=1 S=0L=3 L=2 J=4 I=3 (c) ${}^{3}F_{4} \rightarrow {}^{3}P_{4}$ So, $\Delta S = 0$; $\Delta L = -2$; $\Delta I = 0$ (not allowed transition) S=1 S=1 L=3 L=1 J=4 **J=**4 (d) ${}^{3}F_{4} \rightarrow {}^{3}D_{2}$ So, $\Delta S = 0$; $\Delta L = -1$; $\Delta J = -2$ (not allowed transition) S=1 S=1 L=3 L=2 J=4]=2

142.

Ans. (c) Sol. • $[Mn(H_2O)_6]^{2+} \Rightarrow t_{2g}^3 e_g^2$: High spin complex In this complex, there is neither orbital contribution nor temperature independent paramagnetism (No L-S coupling) and $\alpha = 0$, Thus, μ_{obs} , = μ_{spin} . • $[Co(H_2O)_6]^{3+}$ is a low spin complex. $Co^{3+} \rightarrow d^6$ i.e., $t_{2g}^6 e_g^0$ e_g e_g $f_2 = \frac{1}{16} \int_{-16}^{-16} f_{2g} e_g^0$

No unpaired electron.

0

Therefore, it is diamagnetic in nature.

143. Ans. (c) • Ti³⁺ \Rightarrow d³ complex : $t_{2a}^1 e_a^0$ Sol. Ti⁺³ complex exhibit one broad band due to (i) Vibronic coupling (ii) Jahn-Teller distortion (iii) Spin-orbit coupling • $Co^{2+} \Rightarrow d^7$ complex Exhibit three broad bands due to following transitions: ${}^{4}T_{1g} \rightarrow {}^{4}T_{2g}; {}^{4}T_{1g} \rightarrow {}^{4}A_{2g}; {}^{4}T_{1g} \rightarrow {}^{4}T_{1g} (P)$ $Cr^{3+} \Rightarrow d^3$ complex Exhibit three broad bands due to following transitions : ${}^{4}A_{2g} \rightarrow 4T_{2g}; {}^{4}A_{2g} \rightarrow {}^{4}T_{1g}(F); {}^{4}A_{2g} \rightarrow {}^{4}T_{1g}(P)$ • Mn^{2+} complex \Rightarrow d⁵ complex exhibit a series of very weak (spin forbidden, Laporte forbidden and sharp bands). • Ni²⁺ \Rightarrow d⁸ exhibit three broad bands due to following transitions : ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F); {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$ 144. **(b)** Ans. Trans-[CoLCl(en)₂]+ Hydrolysis Sol. $L = NO_2^-, NCS^-, OH^-, Cl^-$ The tendency to form cis-isomer of the product (A) follows the order : $L = NO_2^- < Cl^- < NCS^- < OH^-$ 145. Ans. **(b)**

An aqueous solution of Fe(III) ion (A) gives a blood-red colour on reaction with KSCN the blood red colour Sol. is due to formation of $[Fe(SCN)(H_2O)_5]^{2+}(B)$. The colur may also used for the identification of Iron (III). This colour is destroyed by the addition of F^- ion due to the formation of $[FeF_6]^{3-}$ (C).

 $[Fe(H_2O)_6]^{3+}$ SCN- \rightarrow $[Fe(H_2O)_5(SCN)]^{2+} \xrightarrow{NaF} [FeF_6]^{3-}$

(A) Blood red color due to LMCT Colorless Compound d-d transition Laporte for bidden (B)Spin forbidde (C)

Two ligands are present on z-axis therefore, d_{z^2} – orbital is involved in σ -bonding. Also three ligands are presentin xy plane, therefore, d_{xy} and $d_{x^2-y^2}$ orbitals are involved in σ -bonding. Thus the d_{yz} and d_{xz} orbitals remain non bonding.

147.

Ans.

(c)

In $[IrBr_6]^{-2}$ oxidation state of Ir is +4 and Ir^{+4} is low spin. octahedral complex with the electronic configuration: Sol.

150. Ans. **(b)** $P+e^- \rightarrow n+\gamma e$ Sol. (From k shell or L-Shell) $P = proton, e^- = electron, n = neutron, \gamma e-neutron$ 151. **(b)** Ans. Sol. more Pme₃ Pme₃ Pme Pme₃ \odot Pme₃ Pme₃ Pme Pme₃ 18e⁻ Pme₃ PMe₃ Pme₃ CF₃ Pme₃ Θ Pme₃ CF_3 CF_3 ĊF₃ 152. Ans. **(b)** Sol. B and D (A) $[Fe(ox)3] \rightarrow High spin$ x - 6 = -3x = +3 n = 5(B) $[Fe(CN)_6]^{-3} \rightarrow Fe(1.S)$ (n=1)(C) Ni⁺²(H.S)Td (d^{8}) ++ + + ++ n=2(d) $[Cu(NH_3)_4]^{+2}$ $Cu^{+2}(sp2d) \rightarrow L.S$ d⁹ n = 1 ++ ++ ++ 153. Ans. **(b)** Sol. FeCr₂O₄ \rightarrow Cr⁺³ CFSE > Fe⁺² CFSE $Fe^{+2}(d^{6})$ $Cr^{+3}(d^{3})$ Normal \downarrow $A^{+2} \rightarrow Td$ B^{+3} – Oh void 154. Ans. **(c)** Sol. $[Fe^{+2}(Phen)_2(Ncs-N)_2] = 300 \text{ k}$

@madchemclasses

Visit On

ww.madchemclasses.online

@Madchem Classes Chemistry 👩 @madchemclasses

H.S

$$d^6 \longrightarrow + +$$

 $+ + + n = 4 = 4.89m$
 $[Fe(phen)_3]^{+2} (d^6) (1.S) \longrightarrow + + + +$
 $n = o$

155.

Ans.

(b)

(a)

Sol. No acidic proton is available so, not depend on hydroxide ion.

156.

Ans.

Sol. Electron transfer reactions by self-exchange electron transfer is fast when HOMO is π^* and LUMO is also π^* i.e. electron transfer is from π^* of reductant to the π^* of oxidant.

$$[Ru(NH_3)_6]^{2+} + [Ru(NH_3)_6]^{3+} +$$

(e)
$$(\pi^*)^6 (\sigma^*)^0$$
 $(\pi^*)^5 (\sigma^*)^0 \rightleftharpoons [Ru(NH_3)_6]^{3+} + [Ru(NH_3)_6]^{2+}$ Reaction is fast
HOMO = $(\pi^*)^6$ LUMO = $(\pi^*)^5$
 $[Co(NH_3)_6]^{2+} + [Co(NH_3)_6]^{3+}$

(f) $(\pi^*)^5(\sigma^*)^2$ $(\pi^*)^5(\sigma^*)^0 \rightleftharpoons [Co(NH_3)_6]^{3+} + [Co(NH_3)_6]^{2+}$ Reaction is slow HOMO = $(\pi^*)^5$ LUMO = $(\sigma^*)^0$ $[Cr(H_2O)_6]^{2+} + [Cr(H_2O)_6]^{3+}$

(g)
$$(\pi^*)^3 (\sigma^*)^1$$
 $(\pi^*)^3 (\sigma^*)^0 \rightleftharpoons [Cr(H_2O)_6]^{3+} + [Cr(H_2O)_6]^{2+}$ Reaction is slow
HOMO = $(\sigma^*)^1$ LUMO = $(\sigma^*)^0$
[Fe(H_2O)_6]^{2+} + [Fe(H_2O)_6]^{3+} + (Cr(H_2O)_6)^{3+}

(h)
$$(\pi^*)^4 (\sigma^*)^2$$
 $(\pi^*)^3 (\sigma^*)^2 \rightleftharpoons [Fe(H_2O)_6]^{3+} + [Fe(H_2O)_6]^{2+}$ Reaction is fast
HOMO = $(\pi^*)^4$ LUMO = $(\pi^*)^3$
Both reactions (a) and (d) are fast but reaction (a) is much faster than (d) because there

Both reactions (a) and (d) are fast but reaction (a) is much faster than (d) because there is small change in M–L bond length in reaction (a) i.e. less activation energy is equired

157.

Ans.

Sol. Selection rule for atomic transition:

(a)

$$\Delta S = 0; \Delta L = 0, \pm 1; \Delta J = 0, \pm 1(J = 0 \rightarrow J = 0 \text{ is not allowed})$$

(a) ${}^{3}F_{4} \rightarrow {}^{3}D_{3}$ So, $\Delta S = 0$; $\Delta L = -1$; $\Delta J = -1$ (allowed transition) S=1 S=1

$$\begin{array}{cccc} J=4 & J=3 \\ J=4 & J=3 \\ (b) \ {}^{3}F_{4} \rightarrow {}^{1}D_{3} \\ So, \Delta S = -1; \ \Delta L = -1; \ \Delta J = -1 \ (not allowed transition) \\ S=1 & S=0 \\ L=3 & L=2 \\ J=4 & J=3 \\ (c) \ {}^{3}F_{4} \rightarrow {}^{3}P_{4} \\ So, \ \Delta S = 0; \ \Delta L = -2; \ \Delta J = 0 \ (not allowed transition) \\ S=1 & S=1 \\ L=3 & L=1 \\ J=4 & J=4 \\ (d) \ {}^{3}F_{4} \rightarrow {}^{3}D_{2} \\ So, \ \Delta S = 0; \ \Delta L = -1; \ \Delta J = -2 \ (not allowed transition) \\ S=1 & S=1 \\ L=3 & L=1 \\ J=4 & J=4 \\ L=3 & L=2 \\ J=4 & J=2 \end{array}$$

158.

@madchemclasses

7880546666

7380546666

```
Ans.
```

(c)

• $[Mn(H_2O)_6]^{2+} \Rightarrow t_{2g}^3 e_g^2$: High spin complex Sol. In this complex, there is neither orbital contribution nor temperature independent paramagnetism (No L–S coupling) and α = 0, Thus, μ_{obs} , = μ_{spin} . • $[Co(H_2O)_6]^{3+}$ is a low spin complex. $\text{Co}^{3+} \rightarrow \text{d}^6$ i.e., $t_{2a}^6 e_g^0$

No unpaired electron. Therefore, it is diamagnetic in nature.

159.

Ans. (c) • Ti³⁺ \Rightarrow d³ complex : $t_{2a}^1 e_a^0$ Sol. Ti⁺³ complex exhibit one broad band due to

(i) Vibronic coupling

(ii) Jahn-Teller distortion

(iii) Spin-orbit coupling • Co²⁺ \Rightarrow d⁷ complex

Exhibit three broad bands due to following transitions:

 ${}^{4}T_{1g} \rightarrow {}^{4}T_{2g}; {}^{4}T_{1g} \rightarrow {}^{4}A_{2g}; {}^{4}T_{1g} \rightarrow {}^{4}T_{1g} (P)$

 $Cr^{3+} \Rightarrow d^3$ complex

Exhibit three broad bands due to following transitions :

 ${}^{4}\text{A2g} \rightarrow 4\text{T}_{2g}; {}^{4}\text{A}_{2g} \rightarrow {}^{4}\text{T}_{1g}(F); {}^{4}\text{A}_{2g} \rightarrow {}^{4}\text{T}_{1g}(P)$

• Mn^{2+} complex \Rightarrow d⁵ complex exhibit a series of very weak (spin forbidden, Laporte forbidden) and sharp bands).

• Ni²⁺ \Rightarrow d⁸ exhibit three broad bands due to following transitions :

$$A_{2g} \rightarrow {}^{3}T_{2g}$$

(b)

(b)

 ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F); {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$

160.

Ans.

```
Hydrolysis
        Trans-[CoLCl(en)2]+-
Sol.
        L = NO_2^-, NCS^-, OH^-, Cl^-
        The tendency to form cis-isomer of the product (A) follows the order :
                L = NO_2^- < Cl^- < NCS^- < OH^-
```

161.

Ans.

An aqueous solution of Fe(III) ion (A) gives a blood-red colour on reaction with KSCN the blood red colour Sol. is due to formation of $[Fe(SCN)(H_2O)_5]^{2+}(B)$. The colur may also used for the identification of Iron (III). This colour is destroyed by the addition of F- ion due to the formation of $[FeF_6]^{3-}$ (C).

$$[Fe(H_2O)_6]^{3+} SCN^- \rightarrow [Fe(H_2O)_5(SCN)]^{2+} \xrightarrow{Nar} [FeF_6]^{3-}$$
(A) Blood red color due to LMCT Colorless Compound d-d transition Laporte for bidden
(B) Spin forbidden
(C)

@madchemclasses

162.

Ans. Sol.

(b)

Two ligands are present on z-axis therefore, d_{z^2} – orbital is involved in σ -bonding. Also three ligands are presentin xy plane, therefore, d_{xy} and $d_{x^2-y^2}$ orbitals are involved in σ -bonding. Thus the d_{yz} and d_{xz} orbitals remain non bonding.

163.

(b)

Ans.

In the complexes, $[Fe(bpy)_3]^{+2}$, $[Ru(bpy)_3]^{+2}$ and $[Fe(phen)_3]^{+2}$, ligands by and phen have empty π^* orbitals, thus, Sol. band in electronic spectra is due to metal to ligand charge transfer (MLCT). Whereas, the other complexes i.e. [FeCl₄]²⁻ (220 nm), [FeBr₄]²⁻ (244 nm), [ReO₄]⁻ (227nm) and [TcO₄]⁻ (286 nm) show LMCT bands.

164.

Ans. **(b)** d⁵– electronic configuration: Sol. +2+10 -1 -2 L = 2 + 1 + 0 = 3 i.e. 'F' $S = 3 \times 1/2 = 3/2$ $2S + 1 = 2 \times 3/2 + 1 = 4$ J = Less than half filled = L-S = 3-3/2 = 3/2Thus, ground state term is $= {}^{2S+}L_J = {}^{4}F_{3/2}$ 165. Ans. (c) Sol. $[Co^{III}(NH_3)_5Cl]^{+2} + [Cr^{II}(OH_2)_6]^{+2} \xrightarrow{H_2O} [(NH_3)_5Co^{III}-Cl-Cr^{II}(H_2O)_5]^{+4} \xrightarrow{electron transfer}$ Inert Labile $[(NH_3)_5Co^{II}-Cl-Cr^{III}(H_2O)_5]^{+4}$ Labile Inert $[Co(NH_3)_5]^{+2} + [Co(H_2O)_5Cl]^{+2}$ **(B)** $[Co(NH_3)_5]^{+2} + H_2O \rightarrow [Co(NH_3)_5(H_2O)]^{+2} \xrightarrow{+5H_3O^+} [Co(H_2O)_6]^{+2} + 5NH_4^+$ 166. Ans. (**d**)

In $[Cr(en)_3]^{+3}$, which is an octahedral complex, three spin allowed electronic transitions are observed. Sol.

Ans.

 $[Co(NH_3)_5Cl]^{2+} + [Cr(OH)_2]_6]^{2+} \rightarrow 5H_3O^+ \rightarrow A + B$ Sol. inner sphene electron transfer.

 $[Co(NH_3)_5]^{2+} + [Cr(OH_2)_5Cl]^{2+}$

$$[Co(H_2O)_6]^{2+} + [Cr(H_2O)_5Cl]^{2+}$$

168.

 \odot

 π -acceptor ligands complex and rgo fast electron transfer by accepting electrons in antibonding orbitals.

So, correct Ans (c) very slow electron transfer $L = NH_3$, n = 6

@Madchem Classes Chemistry

@madchemclasses

 \bigcirc

7880546666

7380546666

Visit On

w.madchemclasses.online

@madchemclasses

It involves large inner sphene neorganization energy as bond length changes $\sigma^* \rightarrow \sigma^*$ slow transfer.

Correct option (ii) a and b

178.

Ans. (c) Allowed transition $\Delta M_s = \pm 1$ and $\Delta M_1 = 0$ Sol.

Tetragonally elongated Cu(II)

(i) Trigonal bipyramidal Sol.

Visit On

 \odot

Correct option (2) 4F , ${}^4A_{2g} \rightarrow {}^4T_{2g}, {}^4A_{2g} \rightarrow {}^4T_{1g}$

182.

- Ans. (c)
- **Sol.** JTD is expected in unsymmetrically filled.

@Madchem Classes Chemistry

(2) Principle quantum no \uparrow rate of e⁻ transfer also \uparrow es

@madchemclasses

 \bigcirc

@madchemclasses

 \odot

Visit On

 \bigcirc

MADCHEM CLASSES

 \odot